Advertisement

Higher serum level of myoglobin could predict more severity and poor outcome for patients with sepsis

Published:January 08, 2016DOI:https://doi.org/10.1016/j.ajem.2016.01.009

      Abstract

      Background

      There have been sporadic case reports published focusing on myoglobin and sepsis. However, there are no systematic studies evaluating the correlation between myoglobin level and sepsis. This study investigated the correlation between the serum myoglobin level and the severity of septic patients. Next, we assessed the predictive value of the serum myoglobin level for the prognosis of septic patients.

      Methods

      Seventy septic patients were included and subdivided into the following 3 groups: sepsis group, severe sepsis group, and septic shock group. We collected blood samples at 0, 6, 12, 18, and 24 hours after admission. The serum levels of myoglobin, C-reactive protein, and procalcitonin were analyzed. We also evaluated the levels of malondialdehyde, which is a biomarker for oxidative stress.

      Results

      The data indicate that the myoglobin level increased gradually within 24 hours after admission. The median myoglobin levels of the sepsis, severe sepsis, and septic shock groups were 635.7, 903.6, and 1094.8 μg/L, respectively (P < .05). The elevated myoglobin level was positively correlated with Sequential Organ Failure Assessment score, C-reactive protein, and procalcitonin level in septic patients. The increased myoglobin level was also associated with the mortality of septic patients. The Kaplan-Meier survival curves indicated that patients with high myoglobin levels had an elevated mortality rate. Moreover, an elevated myoglobin level indicated more oxidative stress.

      Conclusions

      The myoglobin level can be detected in the early stage of sepsis and may serve as a potential biomarker for evaluating sepsis severity and further prognosis.
      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wang Q.
        • Michiue T.
        • Ishikawa T.
        • Zhu B.L.
        • Maeda H.
        • et al.
        Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases.
        Leg Med. 2011; 13: 226-232
        • Sakurai S.
        • Kuroko Y.
        • Shimizu S.
        • Kawada T.
        • Akiyama T.
        • Yamazaki T.
        • et al.
        Effects of intravenous cariporide on release of norepinephrine and myoglobin during myocardial ischemia/reperfusion in rabbits.
        Life Sci. 2014; 114: 102-106
        • Hendgen-Cotta U.B.
        • Kelm M.
        • Rassaf T.
        Myoglobin functions in the heart.
        Free Radic Biol Med. 2014; 73: 252-259
        • Kurt-Mangold M.
        • Drees D.
        • Krasowski M.D.
        Extremely high myoglobin plasma concentrations producing hook effect in a critically ill patient.
        Clin Chim Acta. 2012; 414: 179-181
        • Erbaş O.
        • Taşkıran D.
        Sepsis-induced changes in behavioral stereotypy in rats; involvement of tumor necrosis factor-alpha, oxidative stress, and dopamine turnover.
        J Surg Res. 2014; 186: 262-268
        • Quoilin C.
        • Mouithys-Mickalad A.
        • Lécart S.
        • Fontaine-Aupart M.P.
        • Hoebeke M.
        • et al.
        Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury.
        Biochim Biophys Acta Bioenerg. 2014; 1837: 1790-1800
        • D’Agnillo F.
        • Alayash A.I.
        A role for the myoglobin redox cycle in the induction of endothelial cell apoptosis.
        Free Radic Biol Med. 2002; 33: 1153-1164
        • Ishigami A.
        • Tokunaga I.
        • Gotohda T.
        • Kubo S.
        • et al.
        Immunohistochemical study of myoglobin and oxidative injury-related markers in the kidney of methamphetamine abusers.
        Leg Med. 2003; 5: 42-48
        • D’Agnillo F.
        • Wood F.
        • Porras C.
        • Macdonald V.W.
        • Alayash A.I.
        • et al.
        Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium1.
        Biochim Biophys Acta Mol Cell Biol Res. 2000; 1495: 150-159
        • Faustman C.
        • Sun Q.
        • Mancini R.
        • Suman S.P.
        • et al.
        Myoglobin and lipid oxidation interactions: Mechanistic bases and control.
        Meat Sci. 2010; 86: 86-94
        • Plotnikov E.Y.
        • Chupyrkina A.A.
        • Pevzner I.B.
        • Isaev N.K.
        • Zorov D.B.
        • et al.
        Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria.
        Biochim Biophys Acta (BBA) - Mol Basis Dis. 2009; 1792: 796-803
        • Godin M.
        • Murray P.
        • Mehta R.L.
        Clinical approach to the patient with AKI and sepsis.
        Semin Nephrol. 2015; 35: 12-22
        • Vassiliou A.G.
        • Mastora Z.
        • Orfanos S.E.
        • Jahaj E.
        • Maniatis N.A.
        • Koutsoukou A.
        • et al.
        Elevated biomarkers of endothelial dysfunction/activation at ICU admission are associated with sepsis development.
        Cytokine. 2014; 69: 240-247
        • van den Brand M.
        • Peters R.P.H.
        • Catsburg A.
        • Rubenjan A.
        • Broeke F.J.
        • van den Dungen F.A.
        • et al.
        Development of a multiplex real-time PCR assay for the rapid diagnosis of neonatal late onset sepsis.
        J Microbiol Methods. 2014; 106: 8-15
        • Alqahtani M.F.
        • Marsillio L.E.
        • Rozenfeld R.A.
        A review of biomarkers and physiomarkers in pediatric sepsis.
        Clin Pediatr Emerg Med. 2014; 15: 177-184
        • Pena O.M.
        • Hancock D.G.
        • Lyle N.H.
        • Linder A.
        • Russell J.A.
        • Xia J.
        • et al.
        An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial clinical presentation.
        EBioMedicine. 2014; 1: 64-71
        • Guven H.
        • Altintop L.
        • Baydin A.
        • Esen S.
        • Aygun D.
        • Hokelek M.
        • et al.
        Diagnostic value of procalcitonin levels as an early indicator of sepsis.
        Am J Emerg Med. 2002; 20: 202-206
        • Lavrentieva A.
        • Papadopoulou S.
        • Kioumis J.
        • Kaimakamis E.
        • Bitzani M.
        • et al.
        PCT as a diagnostic and prognostic tool in burn patients. Whether time course has a role in monitoring sepsis treatment.
        Burns. 2012; 38: 356-363
        • Deutschman C.S.
        • Tracey K.J.
        Sepsis: current dogma and new perspectives.
        Immunity. 2014; 40: 463-475
        • Antonucci E.
        • Fiaccadori E.
        • Donadello K.
        • Taccone F.S.
        • Franchi F.
        • Scolletta S.
        • et al.
        Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment.
        J Crit Care. 2014; 29: 500-511
        • Wray C.J.
        • Mammen J.M.V.
        • Hershko D.D.
        • Hasselgren P.O.
        • et al.
        Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle.
        Int J Biochem Cell Biol. 2003; 35: 698-705
        • Ljungman C.
        • Eriksson I.
        • Ronquist G.
        • Roxin L.E.
        • Venge P.
        • Wistrand P.
        • et al.
        Muscle ATP and lactate and the release of myoglobin and carbanhydrase III in acute lower-limb ischaemia.
        Eur J Vasc Surg. 1991; 5: 407-414
        • Tilakaratne H.K.
        • Hunter S.K.
        • Rodgers V.G.J.
        Mathematical modeling of myoglobin facilitated transport of oxygen in devices containing myoglobin-expressing cells.
        Math Biosci. 2002; 176: 253-267
        • Nitta T.
        • Xundi X.
        • Hatano E.
        • Yamamoto N.
        • Uehara T.
        • Yoshida M.
        • et al.
        Myoglobin gene expression attenuates hepatic ischemia reperfusion injury.
        J Surg Res. 2003; 110: 322-331
        • Witting P.K.
        • Mauk A.G.
        • Douglas D.J.
        • Stocker R.
        • et al.
        Reaction of human myoglobin and peroxynitrite: characterizing biomarkers for myoglobin-derived oxidative stress.
        Biochem Biophys Res Commun. 2001; 286: 352-356