Advertisement

Combining early post-resuscitation EEG and HRV features improves the prognostic performance in cardiac arrest model of rats

Published:April 09, 2018DOI:https://doi.org/10.1016/j.ajem.2018.04.017

      Abstract

      Objective

      Early and reliable prediction of neurological outcome remains a challenge for comatose survivors of cardiac arrest (CA). The purpose of this study was to evaluate the predictive ability of EEG, heart rate variability (HRV) features and the combination of them for outcome prognostication in CA model of rats.

      Methods

      Forty-eight male Sprague-Dawley rats were randomized into 6 groups (n = 8 each) with different cause and duration of untreated arrest. Cardiopulmonary resuscitation was initiated after 5, 6 and 7 min of ventricular fibrillation or 4, 6 and 8 min of asphyxia. EEG and ECG were continuously recorded for 4 h under normothermia after resuscitation. The relationships between features of early post-resuscitation EEG, HRV and 96-hour outcome were investigated. Prognostic performances were evaluated using the area under receiver operating characteristic curve (AUC).

      Results

      All of the animals were successfully resuscitated and 27 of them survived to 96 h. Weighted-permutation entropy (WPE) and normalized high frequency (nHF) outperformed other EEG and HRV features for the prediction of survival. The AUC of WPE was markedly higher than that of nHF (0.892 vs. 0.759, p < 0.001). The AUC was 0.954 when WPE and nHF were combined using a logistic regression model, which was significantly higher than the individual EEG (p = 0.018) and HRV (p < 0.001) features.

      Conclusions

      Earlier post-resuscitation HRV provided prognostic information complementary to quantitative EEG in the CA model of rats. The combination of EEG and HRV features leads to improving performance of outcome prognostication compared to either EEG or HRV based features alone.

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berdowski J.
        • Berg R.A.
        • Tijssen J.G.P.
        • Koster R.W.
        Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies.
        Resuscitation. 2010; 81: 1479-1487
        • Ro Y.S.
        • Do Shin S.
        • Song K.J.
        • Park C.B.
        • Lee E.J.
        • Ahn K.O.
        • et al.
        A comparison of outcomes of out-of-hospital cardiac arrest with non-cardiac etiology between emergency departments with low- and high-resuscitation case volume.
        Resuscitation. 2012; 83: 855-861
        • Wallmuller C.
        • Meron G.
        • Kurkciyan I.
        • Schober A.
        • Stratil P.
        • Sterz F.
        Causes of in-hospital cardiac arrest and influence on outcome.
        Resuscitation. 2012; 83: 1206-1211
        • Siriphuwanun V.
        • Punjasawadwong Y.
        • Lapisatepun W.
        • Charuluxananan S.
        • Uerpairojkit K.
        • Patumanond J.
        The initial success rate of cardiopulmonary resuscitation and its associated factors in patients with cardiac arrest within 24 hours after anesthesia for an emergency surgery.
        Risk Manag Healthc Policy. 2014; 7: 65-76
        • Lemiale V.
        • Dumas F.
        • Mongardon N.
        • Giovanetti O.
        • Charpentier J.
        • Chiche J.D.
        • et al.
        Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort.
        Intensive Care Med. 2013; 39: 1972-1980
        • Callaway C.W.
        • Donnino M.W.
        • Fink E.L.
        • Geocadin R.G.
        • Golan E.
        • Kern K.B.
        • et al.
        Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care.
        Circulation. 2015; 132: S465-82
        • Rossetti A.O.
        • Rabinstein A.A.
        • Oddo M.
        Neurological prognostication of outcome in patients in coma after cardiac arrest.
        Lancet Neurol. 2016; 15: 597-609
        • Greer D.M.
        • Yang J.
        • Scripko P.D.
        • Sims J.R.
        • Cash S.
        • Wu O.
        • et al.
        Clinical examination for prognostication in comatose cardiac arrest patients.
        Resuscitation. 2013; 84: 1546-1551
        • Shinozaki K.
        • Oda S.
        • Sadahiro T.
        • Nakamura M.
        • Hirayama Y.
        • Abe R.
        • et al.
        S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review.
        Crit Care. 2009; 13: R121
        • Jeon C.H.
        • Park J.S.
        • Lee J.H.
        • Kim H.
        • Kim S.C.
        • Park K.H.
        • et al.
        Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors.
        Resuscitation. 2017; 118: 21-26
        • Rossetti A.O.
        • Urbano L.A.
        • Delodder F.
        • Kaplan P.W.
        • Oddo M.
        Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest.
        Crit Care. 2010; 14: R173
        • Robinson L.R.
        • Micklesen P.J.
        • Tirschwell D.L.
        • Lew H.L.
        Predictive value of somatosensory evoked potentials for awakening from coma.
        Crit Care Med. 2003; 31: 960-967
        • Chen W.L.
        • Tsai T.H.
        • Huang C.C.
        • Chen J.H.
        • Kuo C.D.
        Heart rate variability predicts short-term outcome for successfully resuscitated patients with out-of-hospital cardiac arrest.
        Resuscitation. 2009; 80: 1114-1118
        • Tiainen M.
        • Parikka H.J.
        • M a Mäkijärvi
        • Takkunen O.S.
        • Sarna S.J.
        • Roine R.O.
        Arrhythmias and heart rate variability during and after therapeutic hypothermia for cardiac arrest.
        Crit Care Med. 2009; 37: 403-409
        • Samaniego E.A.
        • Mlynash M.
        • Caulfi eld A.F.
        • Eyngorn I.
        • Wijman C.A.
        Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia.
        Neurocrit Care. 2011; 15: 113-119
        • Oddo M.
        • Rossetti A.O.
        Predicting neurological outcome after cardiac arrest.
        Curr Opin Crit Care. 2011; 17: 254-259
        • Oddo M.
        • Rossetti A.O.
        Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia.
        Crit Care Med. 2014; 42: 1340-1347
        • Youn C.S.
        • Callaway C.W.
        • Rittenberger J.C.
        • Post Cardiac Arrest Service
        Combination of initial neurologic examination and continuous EEG to predict survival after cardiac arrest.
        Resuscitation. 2015; 94: 73-79
        • Annborn M.
        • Nilsson F.
        • Dankiewicz J.
        • Rundgren M.
        • Hertel S.
        • Struck J.
        • et al.
        The combination of biomarkers for prognostication of long-term outcome in patients treated with mild hypothermia after out-of-hospital cardiac arrest-a pilot study.
        Ther Hypothermia Temp Manag. 2016; 6: 85-90
        • Tsetsou S.
        • Novy J.
        • Pfeiffer C.
        • Oddo M.
        • Rossetti A.O.
        Multimodal outcome prognostication after cardiac arrest and targeted temperature management: analysis at 36 °C.
        Neurocrit Care. 2017 Mar 23; https://doi.org/10.1007/s12028-017-0393-8
        • Chen B.
        • Chen G.
        • Dai C.
        • Wang P.
        • Zhang L.
        • Huang Y.
        • et al.
        Comparison of quantitative characteristics of early post-resuscitation EEG between asphyxial and ventricular fibrillation cardiac arrest in rats.
        Neurocrit Care. 2017 May 8; https://doi.org/10.1007/s12028-017-0401-z
        • Chalkias A.
        • Xanthos T.
        Post-cardiac arrest brain injury: pathophysiology and treatment.
        J Neurol Sci. 2012; 315: 1-8
        • Varvarousis D.
        • Varvarousi G.
        • Iacovidou N.
        • D'Aloja E.
        • Gulati A.
        • Xanthos T.
        The pathophysiologies of asphyxial vs dysrhythmic cardiac arrest: implications for resuscitation and post-event management.
        Am J Emerg Med. 2015; 33: 1297-1304
        • Hendrickx H.H.
        • Rao G.R.
        • Safar P.
        • Gisvold S.E.
        Asphyxia, cardiac arrest and resuscitation in rats. I. Short term recovery.
        Resuscitation. 1984; 12: 97-116
        • Noirhomme Q.
        • Lehembre R.
        • Lugo Z.D.R.
        • Lesenfants D.
        • Luxen A.
        • Laureys S.
        • et al.
        Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest.
        Clin EEG Neurosci. 2014; 45: 6-13
        • Kang X.
        • Jia X.
        • Geocadin R.
        • Thakor N.
        • Maybhate A.
        Multiscale entropy analysis of EEG for assessment of post-cardiac arrest neurological recovery under hypothermia in rats.
        IEEE Trans Biomed Eng. 2009; 56: 1023-1031
        • Deng B.
        • Cai L.
        • Li S.
        • Wang R.
        • Yu H.
        • Chen Y.
        • et al.
        Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer's disease.
        Cogn Neurodyn. 2017; 11: 217-231
        • Zhang X.S.
        • Roy R.J.
        • Jensen E.W.
        EEG complexity as a measure of depth of anesthesia for patients.
        IEEE Trans Biomed Eng. 2001; 48: 1424-1433
        • Zappasodi F.
        • Olejarczyk E.
        • Marzetti L.
        • Assenza G.
        • Pizzella V.
        • Tecchio F.
        Fractal dimension of EEG activity senses neuronal impairment in acute stroke.
        PLoS One. 2014; 9e100199
        • Porta A.
        • Baselli G.
        • Liberati D.
        • Montano N.
        • Cogliati C.
        • Gnecchi-Ruscone T.
        • et al.
        Measuring regularity by means of a corrected conditional entropy in sympathetic outflow.
        Biol Cybern. 1998; 78: 71-78
        • Särkelä M.O.
        • Ermes M.J.
        • van Gils M.J.
        • Yli-Hankala A.M.
        • Jäntti V.H.
        • Vakkuri A.P.
        Quantification of epileptiform electroencephalographic activity during sevoflurane mask induction.
        Anesthesiology. 2007; 107: 928-938
        • Pan J.
        • Tompkins W.J.
        A real-time QRS detection algorithm.
        IEEE Trans Biomed Eng. 1985; 32: 230-236
        • Task Force of the European Society of Cardiology
        • the North American Society of Pacing and Electrophysiology
        Heart rate variability. Standards of measurement, physiological interpretation, and clinical use.
        Circulation. 1996; 93: 1043-1065
        • Guzik P.
        • Piskorski J.
        • Krauze T.
        • Schneider R.
        • Wesseling K.H.
        • Wykretowicz A.
        • et al.
        Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing.
        J Physiol Sci. 2007; 57: 63-71
        • Hashimoto M.
        • Kuwahara M.
        • Tsubone H.
        • Sugano S.
        Diurnal variation of autonomic nervous activity in the rat: investigation by power spectral analysis of heart rate variability.
        J Electrocardiol. 1999; 32: 167-171
        • Kilgannon J.H.
        • Roberts B.W.
        • Jones A.E.
        • Mittal N.
        • Cohen E.
        • Mitchell J.
        • et al.
        Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest.
        Crit Care Med. 2014; 42: 2083-2091
        • Westhall E.
        Electroencephalography as a prognostic tool after cardiac arrest.
        Semin Neurol. 2017; 37: 48-59
        • Westhall E.
        • Rosén I.
        • Rossetti A.O.
        • van Rootselaar A.F.
        • Wesenberg Kjaer T.
        • Friberg H.
        • et al.
        Interrater variability of EEG interpretation in comatose cardiac arrest patients.
        Clin Neurophysiol. 2015; 126: 2397-2404
        • Deng R.
        • Koenig M.A.
        • Young L.M.
        • Jia X.
        Early quantitative gamma-band EEG marker is associated with outcomes after cardiac arrest and targeted temperature management.
        Neurocrit Care. 2015; 23: 262-273
        • Wiley S.L.
        • Razavi B.
        • Krishnamohan P.
        • Mlynash M.
        • Eyngorn I.
        • Meador K.J.
        • et al.
        Quantitative EEG metrics differ between outcome groups and change over the first 72 h in comatose cardiac arrest patients.
        Neurocrit Care. 2017 Jun 23; https://doi.org/10.1007/s12028-017-0419-2
        • Laurent I.
        • Monchi M.
        • Chiche J.D.
        • Joly L.M.
        • Spaulding C.
        • Bourgeois B.
        • et al.
        Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest.
        J Am Coll Cardiol. 2002; 40: 2110-2116
        • Norman G.J.
        • Karelina K.
        • Berntson G.G.
        • Morris J.S.
        • Zhang N.
        • Devries A.C.
        Heart rate variability predicts cell death and inflammatory responses to global cerebral ischemia.
        Front Physiol. 2012; 3: 131