Advertisement

The gradient between arterial and end-tidal carbon dioxide predicts in-hospital mortality in post-cardiac arrest patient

Published:April 14, 2018DOI:https://doi.org/10.1016/j.ajem.2018.04.025

      Abstract

      Purpose

      We investigated the predictive value of the gradient between arterial carbon dioxide (PaCO2) and end-tidal carbon dioxide (ETCO2) (Pa-ETCO2) in post-cardiac arrest patients for in-hospital mortality.

      Methods

      This retrospective observational study evaluated cardiac arrest patients admitted to the emergency department of a tertiary university hospital. The PaCO2 and ETCO2 values at 6, 12, and 24 h after return of spontaneous circulation (ROSC) were obtained from medical records and Pa-ETCO2 gap was calculated as the difference between PaCO2 and ETCO2 at each time point. Multivariate logistic regression analysis was performed to verify the relationship between Pa-ETCO2 gap and clinical variables. Receiver operating characteristic (ROC) curve analysis was performed to determine the cutoff value of Pa-ETCO2 for predicting in-hospital mortality.

      Results

      The final analysis included 58 patients. In univariate analysis, Pa-ETCO2 gaps were significantly lower in survivors than in non-survivors at 12 h [12.2 (6.5–14.8) vs. 13.9 (12.1–19.6) mmHg, p = 0.040] and 24 h [9.1 (6.3–10.5) vs. 17.1 (13.1–23.2) mmHg, p < 0.001)] after ROSC. In multivariate analysis, Pa-ETCO2 gap at 24 h after ROSC was related to in-hospital mortality [odds ratio (95% confidence interval): 1.30 (1.07–1.59), p = 0.0101]. In ROC curve analysis, the optimal cut-off value of Pa-ETCO2 gap at 24 h after ROSC was 10.6 mmHg (area under the curve, 0.843), with 77.8% sensitivity and 85.7% specificity.

      Conclusion

      The Pa-ETCO2 gap at 24 h after ROSC was associated with in-hospital mortality in post-cardiac arrest patients.

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Link M.S.
        • Berkow L.C.
        • Kudenchuk P.J.
        • Halperin H.R.
        • Hess E.P.
        • Moitra V.K.
        • et al.
        Part 7: adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care.
        Circulation. 2015; 132: S444-64
        • Lee M.J.
        • Rho T.H.
        • Kim H.
        • Kang G.H.
        • Kim J.S.
        • Rho S.G.
        • et al.
        Part 3. Advanced cardiac life support: 2015 Korean guidelines for cardiopulmonary resuscitation.
        Clin Exp Emerg Med. 2016; 3: S17-26
        • Soar J.
        • Nolan J.P.
        • Bottiger B.W.
        • Perkins G.D.
        • Lott C.
        • Carli P.
        • et al.
        European resuscitation council guidelines for resuscitation 2015: section 3. Adult advanced life support.
        Resuscitation. 2015; 95: 100-147
        • Falk J.L.
        • Rackow E.C.
        • Weil M.H.
        End-tidal carbon dioxide concentration during cardiopulmonary resuscitation.
        N Engl J Med. 1988; 318: 607-611
        • Grmec Š.
        • Kupnik D.
        Does the Mainz Emergency Evaluation Scoring (MEES) in combination with capnometry (MEESc) help in the prognosis of outcome from cardiopulmonary resuscitation in a prehospital setting?.
        Resuscitation. 2003; 58: 89-96
        • Grmec Š.
        • Klemen P.
        Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest?.
        Eur J Emerg Med. 2001; 8: 263-269
        • Sanders A.B.
        • Kern K.B.
        • Otto C.W.
        • Milander M.M.
        • Ewy G.A.
        End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation: a prognostic indicator for survival.
        JAMA. 1989; 262: 1347-1351
        • Grmec Š.
        • Križmarič M.
        • Mally Š.
        • Koželj A.
        • Špindler M.
        • Lešnik B.
        Utstein style analysis of out-of-hospital cardiac arrest—bystander CPR and end expired carbon dioxide.
        Resuscitation. 2007; 72: 404-414
        • Stock M.C.
        Capnography for adults.
        Crit Care Clin. 1995; 11: 219-232
        • Nunn J.
        • Hill D.
        Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man.
        J Appl Physiol. 1960; 15: 383-389
        • Fletcher R.
        • Jonson B.
        Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration.
        Br J Anaesth. 1984; 56: 109-119
        • Hatle L.
        • Rokseth R.
        The arterial to end-expiratory carbon dioxide tension gradient in acute pulmonary embolism and other cardiopulmonary diseases.
        Chest. 1974; 66: 352-357
        • Hardman J.G.
        • Aitkenhead A.R.
        Estimating alveolar dead space from the arterial to end-tidal CO(2) gradient: a modeling analysis.
        Anesth Analg. 2003; 97: 1846-1851
        • Fletcher R.
        Invasive and noninvasive measurement of the respiratory deadspace in anesthetized children with cardiac disease.
        Anesth Analg. 1988; 67442–7
        • Yousuf T.
        • Brinton T.
        • Murtaza G.
        • Wozniczka D.
        • Ahmad K.
        • Iskandar J.
        • et al.
        Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome.
        J Invest Med. 2017; 65: 338-341
        • Ornato J.P.
        • Garnett A.R.
        • Glauser F.L.
        Relationship between cardiac output and the end-trial carbon dioxide tension.
        Ann Emerg Med. 1990; 19: 1104-1106
        • Yamanaka M.K.
        • Sue D.Y.
        Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure.
        Chest. 1987; 92: 832-835
        • Shetty A.L.
        • Lai K.H.
        • Byth K.
        The CO2 GAP project–CO2 GAP as a prognostic tool in emergency departments.
        Emerg Med Australas. 2010; 22: 524-531
        • Tyburski J.G.
        • Carlin A.M.
        • Harvey E.H.
        • Steffes C.
        • Wilson R.F.
        End-tidal CO2-arterial CO2 differences: a useful intraoperative mortality marker in trauma surgery.
        J Trauma. 2003; 55: 892-897
        • Cha K.C.
        • Kim Y.W.
        • Kim H.I.
        • Kim O.H.
        • Cha Y.S.
        • Kim H.
        • et al.
        Parenchymal lung injuries related to standard cardiopulmonary resuscitation.
        Am J Emerg Med. 2017; 35: 117-121
        • Adrie C.
        • Adib-Conquy M.
        • Laurent I.
        • Monchi M.
        • Vinsonneau C.
        • Fitting C.
        • et al.
        Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome.
        Circulation. 2002; 106: 562-568
        • Samborska-Sablik A.
        • Sablik Z.
        • Gaszynski W.
        The role of the immuno-inflammatory response in patients after cardiac arrest.
        Arch Med Sci. 2011; 7: 619-626
        • Kang D.H.
        • Kim J.
        • Rhee J.E.
        • Kim T.
        • Kim K.
        • Jo Y.H.
        • et al.
        The risk factors and prognostic implication of acute pulmonary edema in resuscitated cardiac arrest patients.
        Clin Exp Emerg Med. 2015; 2: 110-116
        • Kakavas S.
        • Mongardon N.
        • Cariou A.
        • Gulati A.
        • Xanthos T.
        Early-onset pneumonia after out-of-hospital cardiac arrest.
        J Infect. 2015; 70: 553-562
        • Kern K.B.
        • Hilwig R.W.
        • Rhee K.H.
        • Berg R.A.
        Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning.
        J Am Coll Cardiol. 1996; 28: 232-240
        • Neumar R.W.
        • Nolan J.P.
        • Adrie C.
        • Aibiki M.
        • Berg R.A.
        • Böttiger B.W.
        • et al.
        Post–cardiac arrest syndrome.
        Circulation. 2008; 118: 2452-2483
        • Hamel M.B.
        • Phillips R.
        • Teno J.
        • Davis R.B.
        • Goldman L.
        • Lynn J.
        • et al.
        Cost effectiveness of aggressive care for patients with nontraumatic coma.
        Crit Care Med. 2002; 30: 1191-1196
        • Booth C.M.
        • Boone R.H.
        • Tomlinson G.
        • Detsky A.S.
        Is this patient dead, vegetative, or severely neurologically impaired?: assessing outcome for comatose survivors of cardiac arrest.
        JAMA. 2004; 291: 870-879
        • Wijdicks E.F.
        • Bamlet W.R.
        • Maramattom B.V.
        • Manno E.M.
        • McClelland R.L.
        Validation of a new coma scale: the FOUR score.
        Ann Neurol. 2005; 58: 585-593
        • Levy D.
        • Caronna J.
        • Singer B.
        • Lapinski R.
        • Frysman H.
        • Plum F.
        Predicting outcome from hypoxic-ischemic coma.
        JAMA. 1985; 253: 1420-1426
        • Martens P.
        Serum neuron–specific enolase as a prognostic marker for irreversible brain damage in comatose cardiac arrest survivors.
        Acad Emerg Med. 1996; 3: 126-131
        • Hachimi-Idrissi S.
        • Van der Auwera M.
        • Schiettecatte J.
        • Ebinger G.
        • Michotte Y.
        • Huyghens L.
        S-100 protein as early predictor of regaining consciousness after out of hospital cardiac arrest.
        Resuscitation. 2002; 53: 251-257
        • Zandbergen E.G.
        • de Haan R.J.
        • Stoutenbeek C.P.
        • Koelman J.H.
        • Hijdra A.
        Systematic review of early prediction of poor outcome in anoxicischaemic coma.
        Lancet. 1998; 352: 1808-1812
        • Callaway C.W.
        • Donnino M.W.
        • Fink E.L.
        • Geocadin R.G.
        • Golan E.
        • Kern K.B.
        • et al.
        Part 8: Post–cardiac arrest care.
        Circulation. 2015; 132: S465-82