Advertisement

Development of regional extracorporeal life support system: The importance of innovative simulation training

Published:April 18, 2018DOI:https://doi.org/10.1016/j.ajem.2018.04.030

      Abstract

      Background

      Despite advances in mechanical ventilation, severe acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality rates ranging from 30% to 60%. Extracorporeal Membrane Oxygenation (ECMO) can be used as a “bridge to recovery”. ECMO is a complex network that provides oxygenation and ventilation and allows the lungs to rest and recover from respiratory failure, while minimizing iatrogenic ventilator-induced lung injury. In the critical care settings, ECMO is shown to improve survival rates and outcomes in patients with severe ARDS. The primary objective was to present an innovative approach for using high-fidelity medical simulation before setting ECMO program for reversible respiratory failure (RRF) in Poland's first unique regional program “ECMO for Greater Poland”, covering a total population of 3.5 million inhabitants in the Greater Poland region (Wielkopolska).

      Aim and methods

      Because this organizational model is complex and expensive, we use advanced high-fidelity medical simulation to prepare for the real-life implementation. The algorithm was proposed for respiratory treatment by veno-venous (VV) Extracorporeal Membrane Oxygenation (ECMO). The scenario includes all critical stages: hospital identification (Regional Department of Intensive Care) - inclusion and exclusion criteria matching using an authorship protocol; ECMO team transport; therapy confirmation; veno-venous cannulation of mannequin's artificial vessels and implementation of perfusion therapy and transport with ECMO to another hospital in a provincial city (Clinical Department of Intensive Care), where the VV ECMO therapy was performed in the next 48 h, as training platform.

      Results

      The total time, by definition, means the time from the first contact with the mannequin to the cannulation of artificial vessels and starting VV perfusion on ECMO, did not exceed 3 h – including 75 min of transport (the total time of simulation with first call from provincial hospital to admission to the Clinical Intensive Care department was 5 h). The next 48 h for perfusion simulation “in situ” generated a specific learning platform for intensive care personnel. Shortly after this simulation, we performed, the first in the region: ECMO used for RRF treatment. The transport was successful and exceeded 120 km. During first year of Program duration we performed 6 successful ECMO transports (5 adult and 1 paediatric) with 60% of adult patient survival of ECMO therapies. Three patients in good condition were discharged to home. Two years old patient was successfully disconnected from ECMO and in stabile condition is treated in Paediatric Department.

      Conclusions

      We discovered the important role of medical simulation, not only as an examination for testing the medical professional's skills, but also as a mechanism for creating non-existent procedures. During debriefing, it was found that the previous simulation-based training allowed to build a successful procedural chain, to eliminate errors at the stage of identification, notification, transportation and providing ECMO perfusion therapy.

      Abbreviations:

      RRF (reversible respiratory failure), ARDS (acute respiratory distress syndrome), ECMO (Extracorporeal Membrane Oxygenation)

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Puslecki M.
        • Ligowski M.
        • Dabrowski M.
        • Telec W.
        • Perek B.
        • Jemielity M.
        “ECMO for Greater Poland”: a unique regional program for extracorporeal life support.
        Pol Arch Intern Med. 2017; 127: 567-568
        • Rozencwajg S.
        • Pilcher D.
        • Combes A.
        • Schmidt M.
        Outcomes and survival prediction models for severe adult acute respiratory distress syndrome treated with extracorporeal membrane oxygenation.
        Crit Care. 2016 Dec;5; 20: 392
        • Li X.Y.
        • Sun B.
        Application of venovenous extracorporeal membrane oxygenation for severe acute respiratory failure: situations, issues, and trends.
        Chin Med J (Engl). 2017 5th Mar; 130: 505-507
        • Muñoz J.
        • Santa-Teresa P.
        • Tomey M.J.
        • Visedo L.C.
        • Keough E.
        • Barrios J.C.
        • et al.
        Extracorporeal membrane oxygenation (ECMO) in adults with acute respiratory distress syndrome (ARDS): a 6-year experience and case-control study.
        Heart Lung. 2017 Mar – Apr; 46: 100-105
      1. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial.

      2. Puslecki M, Ligowski M, Stefaniak S, Zielinski M, Pawlak A, Dabrowski M, Kłosiewicz T, Sip M, Karczewski M, Małkiewicz T, Gasiorowski L, Telec W, Ładzinska M, Ładzinski P, Perek B, Misterski M, Mrówczynski W, Sobczynski P, Panienski P, Łukasik-Głebocka M, Artynska A, Gezela M, Buczkowski P, Czekajlo M, Jemielity M. Using simulation to create a unique regional ECMO program for the greater Poland region. Qatar Med J. 4th Annual ELSO-SWAC Conference 2017: DOI: https://doi.org/10.5339/qmj.2017.swacelso.79.

        • Puslecki M.
        • Kiel M.
        • Ligowski M.
        • Stefaniak S.
        • Gasiorowski Ł.
        • Dabrowski M.
        • et al.
        Customization of a patient simulator for ECMO training.
        Qatar Med J. 2017; 80https://doi.org/10.5339/qmj.2017.swacelso.80
        • Brum R.
        • Rajani R.
        • Gelandt E.
        • Morgan L.
        • Raguseelan N.
        • Butt S.
        • et al.
        Simulation training for extracorporeal membrane oxygenation.
        Ann Card Anaesth. 2015; 18: 185-190
        • Burton K.S.
        • Pendergrass T.L.
        • Byczkowski T.L.
        • Taylor R.G.
        • Moyer M.R.
        • Falcone R.A.
        • et al.
        Impact of simulation-based extracorporeal membrane oxygenation training in the simulation laboratory and clinical environment.
        Simul Healthc. 2011; 6: 284-291
        • Fehr J.J.
        • Shepard M.
        • McBride M.E.
        • Mehegan M.
        • Reddy K.
        • Murray D.J.
        • et al.
        Simulation-based assessment of ECMO clinical specialists.
        Simul Healthc. 2016; 11: 194-199
        • Puslecki M.
        • Ligowski M.
        • Dabrowski M.
        • Sip M.
        • Stefaniak S.
        • Klosiewicz T.
        • et al.
        The role of simulation to support donation after circulatory death with extracorporeal membrane oxygenation.
        Perfusion. 2017; https://doi.org/10.1177/0267659117716533
      3. Broman L.M; Freckner B. Transportation of critically ill patients on extracorporeal membrane oxygenation. Front Pediatr 4:63. doi: https://doi.org/10.3389/fped.2016.00063.

        • Bryner B.
        • Cooley E.
        • Copenhaver W.
        • Brierley K.
        • Teman N.
        • Landis D.
        • et al.
        Two decades' experience with interfacility transport on extracorporeal membrane oxygenation.
        Ann Thorac Surg. 2014; 98: 1363https://doi.org/10.1016/j. athoracsur.2014.06.025
        • Clement K.C.
        • Fiser R.T.
        • Fiser W.P.
        • Chipman C.W.
        • Taylor B.J.
        • Heulitt M.J.
        • et al.
        Single-institution experience with interhospital extracorporeal membrane oxygenation transport: a descriptive study.
        Pediatr Crit Care Med. 2010; 11: 509https://doi.org/10.1097/PCC.0b013e3181c515ca
        • Biscotti M.
        • Agerstrand C.
        • Abrams D.
        • Ginsburg M.
        • Sonett J.
        • Mongero L.
        • et al.
        One hundred transports on extracorporeal support to an extracorporeal mem-brane oxygenation center.
        Ann Thorac Surg. 2015; 100: 34https://doi.org/10.1016/j. Athoracsur.2015.02.037
        • ELSO
        Guidelines for ECMO Transport Ann Arbor.
        ELSO, 2015 (Available from)
        • Linden V.
        • Palmer K.
        • Reinhard J.
        • Westman R.
        • Ehren H.
        • Granholm T.
        • et al.
        Inter-hospital transportation of patients with severe acute respiratory failure on extracorporeal membrane oxygenation – national and international experience.
        Intensive Care Med. 2001; 27: 1643https://doi.org/10.1007/s001340101060
        • Coppola C.P.
        • Tyree M.
        • Larry K.
        • DiGeronimo R.
        A 22-year experience in global transport extracorporeal membrane oxygenation.
        J Pediatr Surg. 2008; 43: 46https://doi.org/10.1016/j.jpedsurg.2007.09.021
        • Ericsson A.
        • Broman L.M.
        Five-year follow-up of adverse events during inter-hospital transports on extracorporeal membrane oxygenation.
        Regensburg, Germany, EuroELSO2015
        • Broman L.M.
        High-risk inter-hospital transports on extracorporeal membrane oxygenation.
        Glasgow, Scotland, EuroELSO2016
        • Freeman C.L.
        • Bennett T.D.
        • Casper T.C.
        • Larsen G.Y.
        • Hubbard A.
        • Wilkes J.
        • et al.
        Pediatric and neonatal extracorporeal membrane oxygenation: does center volume impact mortality.
        Crit Care Med. 2014; 42: 512https://doi.org/10.1097/01.ccm.0000435674.83682.9629
        • Barbaro R.P.
        • Odetola F.O.
        • Kidwell K.M.
        • Paden M.L.
        • Bartlett R.H.
        • Davis M.M.
        • et al.
        Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry.
        Am J Respir Crit Care Med. 2015; 191: 894https://doi.org/10.1164/rccm.201409-1634OC
        • Starck C.T.
        • Hasenclever P.
        • Falk V.
        • Wilhelm M.J.
        Interhospital transfer of seriously sick ARDS patients using veno-venous extracorporeal membrane oxygenation (ECMO): concept of an ECMO transport team.
        Int J Crit Illn Inj Sci. 2013; 3: 46https://doi.org/10.4103/2229-5151.109420
        • Wiegersma J.S.
        • Droogh J.M.
        • Zijlstra J.G.
        • Fokkema J.
        • Ligtenberg J.J.
        Quality of interhospital transport of the critically ill: impact of a mobile intensive care unit with a specialized retrieval team.
        Crit Care. 2011; 15: R75https://doi.org/10.1186/cc10064
        • Combes A.
        • Brodie D.
        • Bartlett R.
        • et al.
        Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients.
        Am J Respir Crit Care Med. 2014; 190: 488-496
        • Lango R.
        • Szkulmowski Z.
        • Maciejewski D.
        • Sosnowski A.
        • Kusza K.
        Zaktualizowany protokół postępowania u chorych wymagających zastosowania pozaustrojowej oksygenacji krwi (ECMO) w leczeniu ostrej niewydolności oddechowej dorosłych. Zalecenia i wytyczne Zespołu ds. Terapii ECMO Żylno-Żylnym, powołanego przez konsultanta.
        Anaesthesiol Intensive Ther. 2017; 49: 88-99https://doi.org/10.5603/AIT.a2017.0028
        • Boedy R.F.
        • Howell C.G.
        • Kanto Jr., W.P.
        Hidden mortality rate associated with extracorporeal membrane oxygenation.
        J Pediatr. 1990; 117: 462-464
        • Brechot N.
        • Mastroianni C.
        • Schmidt M.
        • Santi F.
        • Legreton G.
        • et al.
        Retrieval of severe acute respiratory failure patients on extracorporeal membrane oxygenation: any impact on their outcomes?.
        J Thorac Cardiovasc Surg. 2018; 155: 1621-1629
        • Anderson J.M.
        • Boyle K.B.
        • Murphy A.A.
        • Yaeger K.A.
        • LeFlore J.
        • Halamek L.P.
        Simulating extracorporeal membrane oxygenation emergencies to improve human performance. Part I: methodologic and technologic innovations.
        Simul Healthc. 2006; 1: 220-227https://doi.org/10.1097/01.SIH.0000243550.24391.ce
        • Brazzi L.
        • Lissoni A.
        • Panigada M.
        • Bottino N.
        • Patroniti N.
        • Pappalardo F.
        • et al.
        Simulation-based training of extracorporeal membrane oxygenation during H1N1 influenza pandemic: the Italian experience.
        Simul Healthc. 2012; 7: 32-34https://doi.org/10.1097/SIH.0b013e31823ebccb
        • Sakamoto S.
        Simulation-based training for handling extracorporeal membrane oxygenation emergencies.
        J Thorac Dis. 2017; 9: 3649-3651https://doi.org/10.21037/jtd.2017.09.102
        • Banfi C.
        • Bendjelid K.
        • Giraud R.
        High-fidelity simulation for extracorporeal membrane oxygenation training, utile or futile?.
        J Thorac Dis. 2017; 9: 4283-4285https://doi.org/10.21037/jtd.2017.10.54
        • Burkhart H.M.
        • Riley J.B.
        • Lynch J.J.
        • et al.
        Simulation-based postcardiotomy extracorporeal membrane oxygenation crisis training for thoracic surgery residents.
        Ann Thorac Surg. 2013; 95: 901-906
        • Burton K.S.
        • Pendergrass T.L.
        • Byczkowski T.L.
        • et al.
        Impact of simulation-based extracorporeal membrane oxygenation training in the simulation laboratory and clinical environment.
        Simul Healthc. 2011; 6: 284-291
        • Zakhary B.M.
        • Kam L.M.
        • Kaufman B.S.
        • et al.
        The utility of high-fidelity simulation for training critical care fellows in the management of extracorporeal membrane oxygenation emergencies: a randomized controlled trial.
        Crit Care Med. 2017; 45: 1367-1373
        • Montero S.
        • Combes A.
        • Schmidt M.
        The extracorporeal membrane oxygenation (ECMO) high-fidelity simulator: the best complementary tool to learn the technique.
        J Torac Dis. 2017; 9: 4273-4276https://doi.org/10.21037/jtd.2017.10.117