Advertisement

Predicting fluid responsiveness: A review of literature and a guide for the clinician

  • Bilal A. Jalil
    Correspondence
    Corresponding author at: Division of Pulmonary, Critical Care and Sleep Disorders Medicine, 550 S. Jackson Street, ACB, A3R43, Louisville, KY 40202, USA.
    Affiliations
    Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University Of Louisville, 550 S Jackson St, ACB A3R43, Louisville, KY 40202, USA
    Search for articles by this author
  • Rodrigo Cavallazzi
    Affiliations
    Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University Of Louisville, 550 S Jackson St, ACB A3R43, Louisville, KY 40202, USA
    Search for articles by this author
Published:August 13, 2018DOI:https://doi.org/10.1016/j.ajem.2018.08.037

      Abstract

      Volume resuscitation is of utmost importance in the treatment of shock. It is imperative that this resuscitation be guided using a reliable method of ascertaining volume status to avoid the ill-effects of hypovolemia while also avoiding those of over-resuscitation. There are numerous tools and methods available in this era to aid the bedside physician in guiding volume resuscitation, many of which will be described in this review of literature.
      The methods to assess preload responsiveness are broadly divided into static and dynamic measurements. Static measurements involve ‘snapshot’ estimations of preload. Dynamic measurements rely on fluctuations in heart-lung interactions or a simulated volume challenge to predict whether increasing preload by volume loading will be beneficial. Dynamic measurements are favored over static measurements, however the conditions to be met for most dynamic measurements to be valid leave these methods to be used reliably in a very discrete critically-ill population. This issue is overcome by utilizing maneuvers that have been developed to assess fluid responsiveness that liberalize the conditions required for most dynamic measurements, such as passive leg raising, end expiratory occlusion, and mini-fluid boluses.
      This review of literature highlights the differences between static and dynamic measurements of fluid responsiveness, and proposes a guide to choosing the most reliable methods of ascertaining volume responsiveness individualized to each patient.

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cecconi M.
        • De Backer D.
        • Antonelli M.
        • Beale R.
        • Bakker J.
        • Hofer C.
        • et al.
        Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
        Intensive Care Med. Dec 2014; 40: 1795-1815
        • Vincent J.L.
        • Sakr Y.
        • Sprung C.L.
        • Ranieri V.M.
        • Reinhart K.
        • Gerlach H.
        • et al.
        Sepsis occurrence in acutely ill patients I. Sepsis in European intensive care units: results of the SOAP study.
        Crit Care Med. Feb 2006; 34: 344-353
        • National Heart L
        • Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N
        • Wiedemann H.P.
        • Wheeler A.P.
        • Bernard G.R.
        • Thompson B.T.
        • et al.
        Comparison of two fluid-management strategies in acute lung injury.
        N Engl J Med. Jun 15 2006; 354: 2564-2575
        • Marik P.E.
        • Monnet X.
        • Teboul J.L.
        Hemodynamic parameters to guide fluid therapy.
        Ann Intensive Care. Mar 21 2011; 1: 1
        • Marik P.E.
        • Cavallazzi R.
        • Vasu T.
        • Hirani A.
        Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature.
        Crit Care Med. Sep 2009; 37: 2642-2647
        • Marik P.E.
        • Cavallazzi R.
        Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense.
        Crit Care Med. Jul 2013; 41: 1774-1781
        • Hanson J.
        • Lam S.W.
        • Alam S.
        • Pattnaik R.
        • Mahanta K.C.
        • Uddin Hasan M.
        • et al.
        The reliability of the physical examination to guide fluid therapy in adults with severe falciparum malaria: an observational study.
        Malar J. Oct 01 2013; 12: 348
        • Brennan J.M.
        • Blair J.E.
        • Goonewardena S.
        • Ronan A.
        • Shah D.
        • Vasaiwala S.
        • et al.
        A comparison by medicine residents of physical examination versus hand-carried ultrasound for estimation of right atrial pressure.
        Am J Cardiol. Jun 01 2007; 99: 1614-1616
        • Vincent J.L.
        • Weil M.H.
        Fluid challenge revisited.
        Crit Care Med. May 2006; 34: 1333-1337
        • Michard F.
        • Teboul J.L.
        Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence.
        Chest. Jun 2002; 121: 2000-2008
        • Rhodes A.
        • Evans L.E.
        • Alhazzani W.
        • Levy M.M.
        • Antonelli M.
        • Ferrer R.
        • et al.
        Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016.
        Crit Care Med. Jan 17 2017; 5: 492-502
        • Klabunde R.E.
        Cardiovascular Physiology Concepts.
        Lippincott Williams & Wilkins/Wolters Kluwer, Philadelphia, PA2012
        • Reddi B.A.
        • Carpenter R.H.
        Venous excess: a new approach to cardiovascular control and its teaching.
        J Appl Physiol. Jan 2005 1985; 98: 356-364
        • Widmaier E.P.
        • Raff H.
        • Strang K.T.
        Vander's Human Physiology: The Mechanisms of Body Function.
        McGraw-Hill, Boston2006
        • Costanzo L.S.
        Physiology.
        Saunders/Elsevier, Philadelphia, PA2010
        • Magder S.
        Volume and its relationship to cardiac output and venous return.
        Crit Care. Sep 10 2016; 20: 271
        • Dellinger R.P.
        • Levy M.M.
        • Rhodes A.
        • Annane D.
        • Gerlach H.
        • Opal S.M.
        • et al.
        Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012.
        Intensive Care Med. Feb 2013; 39: 165-228
        • Dellinger R.P.
        • Levy M.M.
        • Carlet J.M.
        • Bion J.
        • Parker M.M.
        • Jaeschke R.
        • et al.
        Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008.
        Crit Care Med. Jan 2008; 36: 296-327
        • Marik P.E.
        • Baram M.
        • Vahid B.
        Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares.
        Chest. Jul 2008; 134: 172-178
        • Kumar A.
        • Anel R.
        • Bunnell E.
        • Zanotti S.
        • Habet K.
        • Haery C.
        • et al.
        Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study.
        Crit Care. Jun 2004; 8: R128-R136
        • Evans H.L.
        • Cuschieri J.
        • Moore E.E.
        • Shapiro M.B.
        • Nathens A.B.
        • Johnson J.L.
        • et al.
        Inflammation and the host response to injury, a Large-Scale Collaborative Project: patient-oriented research core standard operating procedures for clinical care IX. Definitions for complications of clinical care of critically injured patients.
        J Trauma. Aug 2009; 67: 384-388
        • Osman D.
        • Ridel C.
        • Ray P.
        • Monnet X.
        • Anguel N.
        • Richard C.
        • et al.
        Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge.
        Crit Care Med. Jan 2007; 35: 64-68
        • Michard F.
        • Alaya S.
        • Zarka V.
        • Bahloul M.
        • Richard C.
        • Teboul J.L.
        Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock.
        Chest. Nov 2003; 124: 1900-1908
        • Endo T.
        • Kushimoto S.
        • Yamanouchi S.
        • Sakamoto T.
        • Ishikura H.
        • Kitazawa Y.
        • et al.
        Limitations of global end-diastolic volume index as a parameter of cardiac preload in the early phase of severe sepsis: a subgroup analysis of a multicenter, prospective observational study.
        J Intensive Care. 2013; 1: 11
        • Broch O.
        • Renner J.
        • Gruenewald M.
        • Meybohm P.
        • Hocker J.
        • Schottler J.
        • et al.
        Variation of left ventricular outflow tract velocity and global end-diastolic volume index reliably predict fluid responsiveness in cardiac surgery patients.
        J Crit Care. Jun 2012; 27: 325.e7-325.e13
        • Trof R.J.
        • Danad I.
        • Groeneveld A.J.
        Global end-diastolic volume increases to maintain fluid responsiveness in sepsis-induced systolic dysfunction.
        BMC Anesthesiol. 2013; 13: 12
        • Perel A.
        Intrathoracic blood volume and global end-diastolic volume should be included among indexes used in intensive care for assessment of fluid responsiveness in spontaneously breathing patients.
        Crit Care Med. Aug 2006; 34 ([author reply 2267]): 2266-2267
        • Renner J.
        • Gruenewald M.
        • Brand P.
        • Steinfath M.
        • Scholz J.
        • Lutter G.
        • et al.
        Global end-diastolic volume as a variable of fluid responsiveness during acute changing loading conditions.
        J Cardiothorac Vasc Anesth. Oct 2007; 21: 650-654
        • Agarwal R.
        • Bouldin J.M.
        • Light R.P.
        • Garg A.
        Inferior vena cava diameter and left atrial diameter measure volume but not dry weight.
        Clin J Am Soc Nephrol. May 2011; 6: 1066-1072
        • Wiwatworapan W.
        • Ratanajaratroj N.
        • Sookananchai B.
        Correlation between inferior vena cava diameter and central venous pressure in critically ill patients.
        J Med Assoc Thai. Mar 2012; 95: 320-324
        • Brennan J.M.
        • Blair J.E.
        • Goonewardena S.
        • Ronan A.
        • Shah D.
        • Vasaiwala S.
        • et al.
        Reappraisal of the use of inferior vena cava for estimating right atrial pressure.
        J Am Soc Echocardiogr. Jul 2007; 20: 857-861
        • Lang R.M.
        • Badano L.P.
        • Mor-Avi V.
        • Afilalo J.
        • Armstrong A.
        • Ernande L.
        • et al.
        Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. Jan 2015; 28: 1-39.e14
        • Feissel M.
        • Michard F.
        • Mangin I.
        • Ruyer O.
        • Faller J.P.
        • Teboul J.L.
        Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock.
        Chest. Mar 2001; 119: 867-873
        • Tavernier B.
        • Makhotine O.
        • Lebuffe G.
        • Dupont J.
        • Scherpereel P.
        Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension.
        Anesthesiology. Dec 1998; 89: 1313-1321
        • Hamzaoui O.
        • Monnet X.
        • Teboul J.L.
        Pulsus paradoxus.
        Eur Respir J. Dec 2013; 42: 1696-1705
        • Michard F.
        Changes in arterial pressure during mechanical ventilation.
        Anesthesiology. Aug 2005; 103 ([quiz 449-415]): 419-428
        • Wong F.W.
        Pulsus paradoxus in ventilated and non-ventilated patients.
        Dynamics. Fall 2007; 18: 16-18
        • Mahjoub Y.
        • Lejeune V.
        • Muller L.
        • Perbet S.
        • Zieleskiewicz L.
        • Bart F.
        • et al.
        Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study.
        Br J Anaesth. Apr 2014; 112: 681-685
        • Delannoy B.
        • Wallet F.
        • Maucort-Boulch D.
        • Page M.
        • Kaaki M.
        • Schoeffler M.
        • et al.
        Applicability of pulse pressure variation during unstable hemodynamic events in the intensive care unit: a five-day prospective multicenter study.
        Crit Care Res Pract. 2016; 20167162190
        • Liu Y.
        • Lou J.S.
        • Mi W.D.
        • Yuan W.X.
        • Fu Q.
        • Wang M.
        • et al.
        Pulse pressure variation shows a direct linear correlation with tidal volume in anesthetized healthy patients.
        BMC Anesthesiol. Sep 8 2016; 16: 75
        • Min J.J.
        • Gil N.S.
        • Lee J.H.
        • Ryu D.K.
        • Kim C.S.
        • Lee S.M.
        Predictor of fluid responsiveness in the 'grey zone': augmented pulse pressure variation through a temporary increase in tidal volume.
        Br J Anaesth. Jul 1 2017; 119: 50-56
        • Oliveira-Costa C.D.
        • Friedman G.
        • Vieira S.R.
        • Fialkow L.
        Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes.
        Clinics (Sao Paulo). Jul 2012; 67: 773-778
        • Yang X.
        • Du B.
        Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis.
        Crit Care. Nov 27 2014; 18: 650
        • Monnet X.
        • Bleibtreu A.
        • Ferre A.
        • Dres M.
        • Gharbi R.
        • Richard C.
        • et al.
        Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance.
        Crit Care Med. Jan 2012; 40: 152-157
        • Michard F.
        • Boussat S.
        • Chemla D.
        • Anguel N.
        • Mercat A.
        • Lecarpentier Y.
        • et al.
        Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure.
        Am J Respir Crit Care Med. Jul 2000; 162: 134-138
        • Preisman S.
        • Kogan S.
        • Berkenstadt H.
        • Perel A.
        Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators.
        Br J Anaesth. Dec 2005; 95: 746-755
        • Myatra S.N.
        • Monnet X.
        • Teboul J.L.
        Use of 'tidal volume challenge' to improve the reliability of pulse pressure variation.
        Crit Care. Mar 21 2017; 21: 60
        • Myatra S.N.
        • Prabu N.R.
        • Divatia J.V.
        • Monnet X.
        • Kulkarni A.P.
        • Teboul J.L.
        The changes in pulse pressure variation or stroke volume variation after a "tidal volume challenge" reliably predict fluid responsiveness during low tidal volume ventilation.
        Crit Care Med. Dec 05 2016; 45: 415-421
        • Carlos R.V.
        • Bittar C.S.
        • Lopes M.R.
        • Auler Junior J.O.
        Systolic pressure variation as diagnostic method for hypovolemia during anesthesia for cardiac surgery.
        Rev Bras Anestesiol. Feb 2005; 55: 3-18
        • Berkenstadt H.
        • Margalit N.
        • Hadani M.
        • Friedman Z.
        • Segal E.
        • Villa Y.
        • et al.
        Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery.
        Anesth Analg. Apr 2001; 92: 984-989
        • Piccioni F.
        • Bernasconi F.
        • Tramontano G.T.
        • Langer M.
        A systematic review of pulse pressure variation and stroke volume variation to predict fluid responsiveness during cardiac and thoracic surgery.
        J Clin Monit Comput. Jun 15 2016; 31: 677-684
        • Reuter D.A.
        • Kirchner A.
        • Felbinger T.W.
        • Weis F.C.
        • Kilger E.
        • Lamm P.
        • et al.
        Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function.
        Crit Care Med. May 2003; 31: 1399-1404
        • Zhang Z.
        • Lu B.
        • Sheng X.
        • Jin N.
        Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis.
        J Anesth. Dec 2011; 25: 904-916
        • Teboul J.L.
        • Monnet X.
        Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity.
        Curr Opin Crit Care. Jun 2008; 14: 334-339
        • De Backer D.
        • Heenen S.
        • Piagnerelli M.
        • Koch M.
        • Vincent J.L.
        Pulse pressure variations to predict fluid responsiveness: influence of tidal volume.
        Intensive Care Med. Apr 2005; 31: 517-523
        • Muller L.
        • Louart G.
        • Bousquet P.J.
        • Candela D.
        • Zoric L.
        • de La Coussaye J.E.
        • et al.
        The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness.
        Intensive Care Med. Mar 2010; 36: 496-503
        • Toupin F.
        • Clairoux A.
        • Deschamps A.
        • Lebon J.S.
        • Lamarche Y.
        • Lambert J.
        • et al.
        Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study.
        Can J Anaesth. Sep 2016; 63: 1033-1041
        • Monnet X.
        • Bataille A.
        • Magalhaes E.
        • Barrois J.
        • Le Corre M.
        • Gosset C.
        • et al.
        End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test.
        Intensive Care Med. Jan 2013; 39: 93-100
        • Young A.
        • Marik P.E.
        • Sibole S.
        • Grooms D.
        • Levitov A.
        Changes in end-tidal carbon dioxide and volumetric carbon dioxide as predictors of volume responsiveness in hemodynamically unstable patients.
        J Cardiothorac Vasc Anesth. Aug 2013; 27: 681-684
        • Cannesson M.
        • Besnard C.
        • Durand P.G.
        • Bohe J.
        • Jacques D.
        Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients.
        Crit Care. Oct 05 2005; 9: R562-R568
        • Monnet X.
        • Lamia B.
        • Teboul J.L.
        Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution?.
        Crit Care. Oct 05 2005; 9: 429-430
        • Ahern M.
        • Mallin M.P.
        • Weitzel S.
        • Madsen T.
        • Hunt P.
        Variability in ultrasound education among emergency medicine residencies.
        West J Emerg Med. Sep 2010; 11: 314-318
        • Mosier J.M.
        • Malo J.
        • Stolz L.A.
        • Bloom J.W.
        • Reyes N.A.
        • Snyder L.S.
        • et al.
        Critical care ultrasound training: a survey of US fellowship directors.
        J Crit Care. Aug 2014; 29: 645-649
        • Airapetian N.
        • Maizel J.
        • Alyamani O.
        • Mahjoub Y.
        • Lorne E.
        • Levrard M.
        • et al.
        Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients?.
        Crit Care. Nov 13 2015; 19: 400
        • Barbier C.
        • Loubieres Y.
        • Schmit C.
        • Hayon J.
        • Ricome J.L.
        • Jardin F.
        • et al.
        Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients.
        Intensive Care Med. Sep 2004; 30: 1740-1746
        • Feissel M.
        • Michard F.
        • Faller J.P.
        • Teboul J.L.
        The respiratory variation in inferior vena cava diameter as a guide to fluid therapy.
        Intensive Care Med. Sep 2004; 30: 1834-1837
        • Long E.
        • Oakley E.
        • Duke T.
        • Babl F.E.
        • Paediatric Research in Emergency Departments International C
        Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: a systematic review and meta-analysis.
        Shock. May 2017; 47: 550-559
        • Guiotto G.
        • Masarone M.
        • Paladino F.
        • Ruggiero E.
        • Scott S.
        • Verde S.
        • et al.
        Inferior vena cava collapsibility to guide fluid removal in slow continuous ultrafiltration: a pilot study.
        Intensive Care Med. Apr 2010; 36: 692-696
        • Via G.
        • Tavazzi G.
        • Price S.
        Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view.
        Intensive Care Med. Jul 2016; 42: 1164-1167
        • Lafanechere A.
        • Pene F.
        • Goulenok C.
        • Delahaye A.
        • Mallet V.
        • Choukroun G.
        • et al.
        Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients.
        Crit Care. 2006; 10: R132
        • Muller L.
        • Toumi M.
        • Bousquet P.J.
        • Riu-Poulenc B.
        • Louart G.
        • Candela D.
        • et al.
        An increase in aortic blood flow after an infusion of 100 mL colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study.
        Anesthesiology. Sep 2011; 115: 541-547
        • Marik P.E.
        • Levitov A.
        • Young A.
        • Andrews L.
        The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients.
        Chest. Feb 1 2013; 143: 364-370
        • Jalil B.
        • Thompson P.
        • Cavallazzi R.
        • Marik P.
        • Mann J.
        • El-Kersh K.
        • et al.
        Comparing changes in carotid flow time and stroke volume induced by passive leg raising.
        Am J Med Sci. Feb 2018; 355: 168-173
        • Krige A.
        • Bland M.
        • Fanshawe T.
        Fluid responsiveness prediction using Vigileo FloTrac measured cardiac output changes during passive leg raise test.
        J Intensive Care. 2016; 4: 63
        • Benomar B.
        • Ouattara A.
        • Estagnasie P.
        • Brusset A.
        • Squara P.
        Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test.
        Intensive Care Med. Nov 2010; 36: 1875-1881
        • Duus N.
        • Shogilev D.J.
        • Skibsted S.
        • Zijlstra H.W.
        • Fish E.
        • Oren-Grinberg A.
        • et al.
        The reliability and validity of passive leg raise and fluid bolus to assess fluid responsiveness in spontaneously breathing emergency department patients.
        J Crit Care. Feb 2015; 30: 217.e211-217.e215
        • Silva S.
        • Jozwiak M.
        • Teboul J.L.
        • Persichini R.
        • Richard C.
        • Monnet X.
        End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome.
        Crit Care Med. Jul 2013; 41: 1692-1701
        • Monnet X.
        • Osman D.
        • Ridel C.
        • Lamia B.
        • Richard C.
        • Teboul J.L.
        Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients.
        Crit Care Med. Mar 2009; 37: 951-956
        • Antiperovitch P.
        • Iliescu E.
        • Chan B.
        Carotid systolic flow time with passive leg raise correlates with fluid status changes in patients undergoing dialysis.
        J Crit Care. Jun 2017; 39: 83-86
        • Monnet X.
        • Teboul J.L.
        Passive leg raising: five rules, not a drop of fluid!.
        Crit Care. Jan 14 2015; 19: 18
        • Monnet X.
        • Rienzo M.
        • Osman D.
        • Anguel N.
        • Richard C.
        • Pinsky M.R.
        • et al.
        Passive leg raising predicts fluid responsiveness in the critically ill.
        Crit Care Med. May 2006; 34: 1402-1407
        • Grassi P.
        • Lo Nigro L.
        • Battaglia K.
        • Barone M.
        • Testa F.
        • Berlot G.
        Pulse pressure variation as a predictor of fluid responsiveness in mechanically ventilated patients with spontaneous breathing activity: a pragmatic observational study.
        HSR proceedings in intensive care & cardiovascular anesthesia. 2013; 5: 98-109
        • Qiao H.
        • Zhang J.
        • Liang W.M.
        Validity of pulse pressure and systolic blood pressure variation data obtained from a Datex Ohmeda S/5 monitor for predicting fluid responsiveness during surgery.
        J Neurosurg Anesthesiol. 2010; 22: 316-322
        • Hofer C.K.
        • Senn A.
        • Weibel L.
        • Zollinger A.
        Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system.
        Crit Care. 2008; 12: R82
        • Hofer C.K.
        • Muller S.M.
        • Furrer L.
        • Klaghofer R.
        • Genoni M.
        • Zollinger A.
        Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting.
        Chest. 2005; 128: 848-854
        • Kim K.M.
        • Gwak M.S.
        • Choi S.J.
        • Kim M.H.
        • Park M.H.
        • Heo B.Y.
        Pulse pressure variation and stroke volume variation to predict fluid responsiveness in patients undergoing carotid endarterectomy.
        Korean J Anesthesiol. 2013; 65: 237-243
        • Westphal G.A.
        • Silva E.
        • Goncalves A.R.
        • Caldeira Filho M.
        • Poli-de-Figueiredo L.F.
        Pulse oximetry wave variation as a noninvasive tool to assess volume status in cardiac surgery.
        Clinics (Sao Paulo). 2009; 64: 337-343
        • Penna G.L.
        • Rosa P.A.
        • Kurtz P.M.
        • Braga F.
        • Almeida G.F.
        • Freitas M.
        • Drumond L.E.
        • Souza R.V.
        • Cukier M.S.
        • Salgado A.
        • Faria C.
        • Kezen J.
        • Japiassu A.M.
        • Kalichsztein M.
        • Nobre G.
        Comparison between respiratory pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure variations among patients with and without norepinephrine use.
        Revista Brasileira de terapia intensiva. 2009; 21: 349-352