Advertisement

Esmolol in the management of pre-hospital refractory ventricular fibrillation: A systematic review and meta-analysis

      Abstract

      Background

      Esmolol has been proposed as a viable adjunctive therapy for pre-hospital refractory ventricular fibrillation/pulseless ventricular tachycardia (VF/pVT).

      Objectives

      We performed a systematic review and meta-analysis to assess the effectiveness of esmolol on pre-hospital refractory VF/pVT, compared with standard of care.

      Methods

      MEDLINE, Embase, Scopus, and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched for eligible studies. Two investigators independently extracted relevant data and assessed the methodological quality of each included study using the ROBINS-I tool. The quality of evidence for summary estimates was assessed according to GRADE guidelines. Pooled risk ratios (RRs) with 95% confidence intervals (CIs) for each outcome of interest were calculated.

      Results

      The search yielded 3253 unique records, of which two studies were found to be in accordance with the research purpose, totaling 66 patients, of whom 33.3% (n = 22) received esmolol. Additional evidence was provided in the paper but was not relevant to the analysis and was therefore not included. Esmolol was likely associated with an increased rate of survival to discharge (RR 2.82, 95% CI 1.01–7.93, p = 0.05) (GRADE: Very low) and survival with favorable neurological outcome (RR 3.44, 95% CI 1.11–10.67, p = 0.03) (GRADE: Very low). Similar results were found for return of spontaneous circulation (ROSC) (RR 2.63, 95% CI 1.37–5.07, p = 0.004) (GRADE: Very low) and survival to intensive care unit (ICU)/hospital admission (RR 2.63, 95% CI 1.37–5.07, p = 0.004) (GRADE: Very low).

      Conclusion

      The effectiveness of esmolol for refractory VF/pVT remains unclear. Trial sequential analysis (TSA) indicates that the evidence is inconclusive and that further trials are required in order to reach a conclusion. Therefore, it is imperative to continue to accumulate evidence in order to obtain a higher level of scientific evidence.

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • et al.
        Heart disease and stroke statistics—2019 update: a report from the American Heart Association.
        Circulation. 2019; 139: e56-528
        • Nichol G.
        • Thomas E.
        • Callaway C.W.
        • et al.
        Regional variation in out-of-hospital cardiac arrest incidence and outcome.
        JAMA. 2008; 300: 1423-1431
        • Al-Khatib S.M.
        • Stevenson W.G.
        • Ackerman M.J.
        • et al.
        2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society.
        Circulation. 2018; 138: e272-e391
        • Link M.S.
        • Berkow L.C.
        • Kudenchuk P.J.
        • et al.
        Part 7: adult advanced cardiovascular life support: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care.
        Circulation. 2015; 132: S444-S464
        • Wang C.H.
        • Huang C.H.
        • Chang W.T.
        • et al.
        Biphasic versus monophasic defibrillation in out-of-hospital cardiac arrest: a systematic review and meta-analysis.
        Am J Emerg Med. 2013; 31: 1472-1478
        • Koster R.W.
        • Walker R.G.
        • Chapman F.W.
        Recurrent ventricular fibrillation during advanced life support care of patients with prehospital cardiac arrest.
        Resuscitation. 2008; 78: 252-257
        • Sakai T.
        • Iwami T.
        • Tasaki O.
        • et al.
        Incidence and outcomes of out-of-hospital cardiac arrest with shock-resistant ventricular fibrillation: data from a large population-based cohort.
        Resuscitation. 2010; 81: 956-961
        • Hajbaghery M.A.
        • Mousavi G.
        • Akbari H.
        Factors influencing survival after in-hospital cardiopulmonary resuscitation.
        Resuscitation. 2005; 66: 317-321
        • Yannopoulos D.
        • Bartos J.A.
        • Martin C.
        • et al.
        Minnesota Resuscitation Consortium’s advanced perfusion and reperfusion cardiac life support strategy for out-of-hospital refractory ventricular fibrillation.
        J Am Heart Assoc. 2016; 5e003732
        • Maekawa K.
        • Tanno K.
        • Hase M.
        • Mori K.
        • Asai Y.
        Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis.
        Crit Care Med. 2013; 41: 1186-1196
        • Boehm K.M.
        • Keyes D.C.
        • Mader L.E.
        • Moccia J.M.
        First report of survival in refractory ventricular fibrillation after dual-axis defibrillation and esmolol administration.
        West J Emerg Med. 2016; 17: 762-765
        • Dantzig J.M.V.
        • Koster R.W.
        • Biervliet J.D.
        Treatment with esmolol of ventricular fibrillation unresponsive to lidocaine and procainamide.
        J Cardiothorac Vasc Anesth. 1991; 5: 600-603
        • Hwang C.W.
        • Gamble G.
        • Marchick M.
        • Becker T.K.
        A case of refractory ventricular fibrillation successfully treated with low dose esmolol.
        BMJ Case Rep. 2019; 12e228208
        • Karaaslan K.
        • Umutoglu T.
        • Topuz U.
        • Ay Y.
        Esmolol administration for the treatment of refractory ventricular fibrillation.
        Bezmialem Sci. 2016; 4: 131-133
        • Nademanee K.
        • Taylor R.
        • Bailey W.E.
        • Rieders D.E.
        • Kosar E.M.
        Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy.
        Circulation. 2000; 102: 742-747
        • Srivatsa U.N.
        • Ebrahimi R.
        • El-Bialy A.
        • Wachsner R.Y.
        Electrical storm: case series and review of management.
        J Cardiovasc Pharmacol Ther. 2003; 8: 237-246
        • Driver B.E.
        • Debaty G.
        • Plummer D.W.
        • Smith S.W.
        Use of esmolol after failure of standard cardiopulmonary resuscitation to treat patients with refractory ventricular fibrillation.
        Resuscitation. 2014; 85: 1337-1341
        • Lee Y.H.
        • Lee K.J.
        • Min Y.H.
        • et al.
        Refractory ventricular fibrillation treated with esmolol.
        Resuscitation. 2016; 107: 150-155
        • de Oliveira F.C.
        • Feitosa-Filho G.S.
        • Ritt L.E.
        Use of beta-blockers for the treatment of cardiac arrest due to ventricular fibrillation/pulseless ventricular tachycardia: a systematic review.
        Resuscitation. 2012; 83: 674-683
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • The PRISMA Group
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6: e1000097
        • McGowan J.
        • Sampson M.
        • Salzwedel D.M.
        • Cogo E.
        • Foerster V.
        • Lefebvre C.
        PRESS peer review of electronic search strategies: 2015 guideline statement.
        J Clin Epidemiol. 2016; 75: 40-46
        • Sterne J.A.
        • Hernán M.A.
        • Reeves B.C.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355: i4919
        • Begg C.B.
        • Mazumdar M.
        Operating characteristics of a rank correlation test for publication bias.
        Biometrics. 1994; 50: 1088-1101
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Balshem H.
        • Helfand M.
        • Schünemann H.J.
        • et al.
        GRADE guidelines: 3. Rating the quality of evidence.
        J Clin Epidemiol. 2011; 64: 401-406
        • Guyatt G.H.
        • Oxman A.D.
        • Kunz R.
        • et al.
        GRADE guidelines: 2. Framing the question and deciding on important outcomes.
        J Clin Epidemiol. 2011; 64: 395-400
        • Guyatt G.H.
        • Oxman A.D.
        • Vist G.
        • et al.
        GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias).
        J Clin Epidemiol. 2011; 64: 407-415
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188
        • Demets D.L.
        Methods for combining randomized clinical trials: strengths and limitations.
        Stat Med. 1987; 6: 341-350
        • JPT Higgins
        • Green Se
        Cochrane handbook for systematic reviews of interventions, version 5.0.2.
        in: Higgins J.P.T. Green S. The cochrane collaboration. 2009
        • Wetterslev J.
        • Thorlund K.
        • Brok J.
        • Gluud C.
        Estimating required information size by quantifying diversity in random-effects model meta-analyses.
        BMC Med Res Methodol. 2009; 9: 86
        • R Core Team
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2017
        • Wetterslev J.
        • Thorlund K.
        • Brok J.
        • Gluud C.
        Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis.
        J Clin Epidemiol. 2008; 61: 64-75
        • Thorlund K.
        • Devereaux P.J.
        • Wetterslev J.
        • et al.
        Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses?.
        Int J Epidemiol. 2009; 38: 276-286
        • Thorlund K.
        • Engstrøm J.
        • Wetterslev J.
        • Brok J.
        • Imberger G.
        • Gluud C.
        User manual for trial sequential analysis (TSA).
        Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen, Denmark2011: 1-115 (available from)
      1. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C. Software for trial sequential analysis (TSA) ver. 0.9.5.10 beta. Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen, Denmark, free-ware available at www.ctu.dk/tsa.

        • Cammarata G.
        • Weil M.H.
        • Sun S.
        • Tang W.
        • Wang J.
        • Huang L.
        Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival.
        Crit Care Med. 2004; 32: S440-S443
        • Jingjun L.
        • Yan Z.
        • Weijie Dongdong Z.
        • Guosheng L.
        • Mingwei B.
        Effect and mechanism of esmolol given during cardiopulmonary resuscitation in a porcine ventricular fibrillation model.
        Resuscitation. 2009; 80: 1052-1059
        • Karlsen H.
        • Bergan H.A.
        • Halvorsen P.S.
        • et al.
        Esmolol for cardioprotection during resuscitation with adrenaline in an ischaemic porcine cardiac arrest model.
        Intensive Care Med Exp. 2019; 7
        • Killingsworth C.R.
        • Wei C.C.
        • Dell’Italia L.J.
        • et al.
        Short-acting beta-adrenergic antagonist esmolol given at reperfusion improves survival after prolonged ventricular fibrillation.
        Circulation. 2004; 109: 2469-2474
        • Li J.
        • Li C.
        • Yuan W.
        • et al.
        Neuroprotective effect of esmolol in a porcine model of cardiac arrest.
        Int J Clin Exp Med. 2018; 11: 3100-3112
        • Strohmenger H.U.
        • Wenzel V.
        • Eberhard R.
        • Guth B.D.
        • Lurie K.G.
        • Lindner K.H.
        Effects of the specific bradycardic agent zatebradine on hemodynamic variables and myocardial blood flow during the early postresuscitation phase in pigs.
        Resuscitation. 1999; 42: 211-220
        • Tang W.
        • Weil M.H.
        • Gazmuri R.J.
        • Sun S.
        • Duggal C.
        • Bisera J.
        Pulmonary ventilation/perfusion defects induced by epinephrine during CPR.
        Circulation. 1991; 84: 2101-2107
        • Theochari E.
        • Xanthos T.
        • Papadimitriou D.
        • et al.
        Selective beta blockade improves the outcome of cardiopulmonary resuscitation in a swine model of cardiac arrest.
        Ann Ital Chir. 2008; 79: 409-414
        • Zhang Q.
        • Li C.
        Combination of epinephrine with esmolol attenuates post-resuscitation myocardial dysfunction in a porcine model of cardiac arrest.
        PLoS One. 2013; 8
        • Raina K.D.
        • Callaway C.
        • Rittenberger J.C.
        • Holm M.B.
        Neurological and functional status following cardiac arrest: method and tool utility.
        Resuscitation. 2008; 79: 249-256
        • Ditchey R.V.
        • Goto Y.
        • Lindenfeld J.
        Myocardial oxygen requirements during experimental cardiopulmonary resuscitation.
        Cardiovasc Res. 1992; 26: 791-797
        • Ditchey R.V.
        • Slinker B.K.
        Phenylephrine plus propranolol improves the balance between myocardial oxygen supply and demand during experimental cardiopulmonary resuscitation.
        Am Heart J. 1994; 127: 324-330
        • Ditchey R.V.
        • Rubio-Perez A.
        • Slinker B.K.
        Beta-adrenergic blockade reduces myocardial injury during experimental cardiopulmonary resuscitation.
        J Am Coll Cardiol. 1994; 24: 804-812
        • Hilwig R.W.
        • Kern K.B.
        • Berg R.A.
        • Sanders A.B.
        • Otto C.W.
        • Ewy G.A.
        Catecholamines in cardiac arrest: role of alpha agonists, beta-adrenergic blockers and high-dose epinephrine.
        Resuscitation. 2000; 47: 203-208
        • Menegazzi J.J.
        • Seaberg D.C.
        • Yealy D.M.
        • Davis E.A.
        • MacLeod B.A.
        Combination pharmacotherapy with delayed countershock vs standard advanced cardiac life support after prolonged ventricular fibrillation.
        Prehosp Emerg Care. 2000; 4: 31-37
        • Pellis T.
        • Weil M.H.
        • Tang W.
        • et al.
        Evidence favoring the use of an alpha2-selective vasopressor agent for cardiopulmonary resuscitation.
        Circulation. 2003; 108: 2716-2721
        • Huang L.
        • Weil M.H.
        • Cammarata G.
        • Sun S.
        • Tang W.
        Non-selective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model.
        Crit Care Med. 2004; 32: S378-S380
        • Wang J.
        • Weil M.H.
        • Tang W.
        • Sun S.
        • Huang L.
        Levosimendan improves postresuscitation myocardial dysfunction after beta-adrenergic blockade.
        J Lab Clin Med. 2005; 146: 179-183
        • Besterman E.M.
        • Friedlander D.H.
        Clinical experiences with propranolol.
        Postgrad Med J. 1965; 41: 526-535
        • Sloman G.
        • Robinson J.S.
        • Mclean K.
        Propranolol (Inderal) in persistent ventricular fibrillation.
        Br Med J. 1965; 1: 895-896
        • Nielsen B.L.
        • Jorgensen F.S.
        Propranolol (Inderal) in cardiac arrhythmias.
        Acta Med Scand. 1966; 180: 631-638
        • Iwatsuki K.
        • Yusa T.
        • Hashimoto Y.
        • Watabe Y.
        Effect of propranolol on paroxysmal ventricular fibrillation.
        Tohoku J Exp Med. 1966; 88: 257-262
        • Ikram H.
        Propranolol in persistent ventricular fibrillation complicating acute myocardial infarction.
        Am Heart J. 1968; 75: 795-798
        • Rothfeld E.L.
        • Lipowitz M.
        • Zucker I.R.
        • Parsonnet V.
        • Bernstein A.
        Management of persistently recurring ventricular fibrillation with propranolol hydrochloride.
        JAMA. 1968; 204: 546-548
        • Mason J.R.
        • Marek J.C.
        • Loeb H.S.
        • Scanlon P.J.
        Intravenous propranolol in the treatment of repetitive ventricular tachyarrhythmias during resuscitation from sudden death.
        Am Heart J. 1985; 110: 161-165
        • Tsagalou E.P.
        • Kanakakis J.
        • Rokas S.
        • Anastasiou-Nana M.I.
        Suppression by propranolol and amiodarone of an electrical storm refractory to metoprolol and amiodarone.
        Int J Cardiol. 2005; 99: 341-342
        • Miwa Y.
        • Ikeda T.
        • Mera H.
        • et al.
        Effects of landiolol, an ultra-short-acting beta1-selective blocker, on electrical storm refractory to class III antiarrhythmic drugs.
        Circ J. 2010; 74: 856-863
        • Soar J.
        • Nolan J.P.
        • Böttiger B.W.
        • et al.
        European resuscitation council guidelines for resuscitation 2015: section 3. Adult advanced life support.
        Resuscitation. 2015; 95: 100-147
        • Neumar R.W.
        • Shuster M.
        • Callaway C.W.
        • et al.
        Part 1: executive summary: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care.
        Circulation. 2015; 132: S315-S367
        • Olasveengen T.M.
        • Sunde K.
        • Brunborg C.
        • Thowsen J.
        • Steen P.A.
        • Wik L.
        Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial.
        JAMA. 2009; 302: 2222-2229
        • Jacobs I.G.
        • Finn J.C.
        • Jelinek G.A.
        • Oxer H.F.
        • Thompson P.L.
        Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial.
        Resuscitation. 2011; 82: 1138-1143
        • Perkins G.D.
        • Ji C.
        • Deakin C.D.
        • et al.
        A randomized trial of epinephrine in out-of-hospital cardiac arrest.
        N Engl J Med. 2018; 379: 711-721
        • Gazmuri R.
        • Becker J.
        Cardiac resuscitation. The search for hemodynamically more effective methods.
        Chest. 1997; 111: 712-723
        • Berglund E.
        • Monroe R.G.
        • Schreiner G.I.
        Myocardial oxygen consumption and coronary blood flow during potassium-induced cardiac arrest and during ventricular fibrillation.
        Acta Physiol Scand. 1957; 41: 261-268
        • Lindner K.H.
        • Ahnefeld F.W.
        • Schuermann W.
        • Bowdler I.M.
        Epinephrine and norepinephrine in cardiopulmonary resuscitation. Effects on myocardial oxygen delivery and consumption.
        Chest. 1990; 97: 1458-1462
        • Livesay J.J.
        • Follette D.M.
        • Fey K.H.
        • et al.
        Optimizing myocardial supply/demand balance with alpha-adrenergic drugs during cardiopulmonary resuscitation.
        J Thorac Cardiovasc Surg. 1978; 76: 244-251
        • Tang W.
        • Weil M.H.
        • Sun S.
        • Noc M.
        • Yang L.
        • Gazmuri R.J.
        Epinephrine increases the severity of postresuscitation myocardial dysfunction.
        Circulation. 1995; 92: 3089-3093
        • Rivers E.P.
        • Wortsman J.
        • Rady M.Y.
        • Blake H.C.
        • McGeorge F.T.
        • Buderer N.M.
        The effect of the total cumulative epinephrine dose administered during human CPR on hemodynamic, oxygen transport, and utilization variables in the postresuscitation period.
        Chest. 1994; 106: 1499-1507
        • Tisdale J.E.
        • Patel R.V.
        • Webb C.R.
        • Borzak S.
        • Zarowitz B.J.
        Proarrhythmic effects of intravenous vasopressors.
        Ann Pharmacother. 1995; 29: 269-281
        • Baker J.G.
        The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors.
        Br J Pharmacol. 2005; 144: 317-322
        • Wallén N.H.
        • Larsson P.T.
        • Egberg N.
        • Hjemdahl P.
        Alpha-adrenoceptor blockade by phentolamine inhibits adrenaline- induced platelet activation in vivo without affecting resting measurements.
        Clin Sci (Lond). 1992; 82: 369-376
        • Ristagno G.
        • Tang W
        • Huang L.
        • et al.
        Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation.
        Crit Care Med. 2009; 37: 1408-1415
        • Badgett R.G.
        • Lawrence V.A.
        • Cohn S.L.
        Variations in pharmacology of beta-blockers may contribute to heterogeneous results in trials of perioperative beta-blockade.
        Anesthesiology. 2010; 113: 585-592
        • Benfield P.
        • Sorkin E.M.
        Esmolol. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy.
        Drug. 1987; 33: 392-412
        • Volz-Zang C.
        • Eckrich B.
        • Jahn P
        • et al.
        Esmolol, an ultrashort-acting, selective β1-adrenoceptor antagonist: pharmacodynamic and pharmacokinetic properties.
        Eur J Clin Pharmacol. 2004; 46: 399-404
        • Wiest D.B.
        • Haney J.S.
        Clinical pharmacokinetics and therapeutic efficacy of esmolol.
        Clinical pharmacokinetics. 2012; 51: 347-356
        • Weisfeldt M.L.
        • Becker L.B.
        Resuscitation after cardiac arrest: a 3-phase time-sensitive model.
        JAMA. 2002; 288: 3035-3038
        • Miraglia D.
        • Miguel L.A.
        • Alonso W.
        The evolving role of esmolol in management of pre-hospital refractory ventricular fibrillation; a scoping review.
        Arch Acad Emerg Med. 2020; e15: 8
        • Gottlieb M.
        • Dyer S.
        • Peksa G.D.
        Beta-blockade for the treatment of cardiac arrest due to ventricular fibrillation or pulseless ventricular tachycardia: a systematic review and meta-analysis.
        Resuscitation. 2020; 146: 118-125