Advertisement

Identifying cardiogenic shock in the emergency department

Published:September 23, 2020DOI:https://doi.org/10.1016/j.ajem.2020.09.045

      Abstract

      Introduction

      Cardiogenic shock is difficult to diagnose due to diverse presentations, overlap with other shock states (i.e. sepsis), poorly understood pathophysiology, complex and multifactorial causes, and varied hemodynamic parameters. Despite advances in interventions, mortality in patients with cardiogenic shock remains high. Emergency clinicians must be ready to recognize and start appropriate therapy for cardiogenic shock early.

      Objective

      This review will discuss the clinical evaluation and diagnosis of cardiogenic shock in the emergency department with a focus on the emergency clinician.

      Discussion

      The most common cause of cardiogenic shock is a myocardial infarction, though many causes exist. It is classically diagnosed by invasive hemodynamic measures, but the diagnosis can be made in the emergency department by clinical evaluation, diagnostic studies, and ultrasound. Early recognition and stabilization improve morbidity and mortality. This review will focus on identification of cardiogenic shock through clinical examination, laboratory studies, and point-of-care ultrasound.

      Conclusions

      The emergency clinician should use the clinical examination, laboratory studies, electrocardiogram, and point-of-care ultrasound to aid in the identification of cardiogenic shock. Cardiogenic shock has the potential for significant morbidity and mortality if not recognized early.

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Henning D.J.
        • Kearney K.E.
        • Hall M.K.
        • Mahr C.
        • Shapiro N.I.
        • Nichol G.
        Identification of hypotensive emergency department patients with cardiogenic etiologies.
        Shock. 2018; 49: 131-136https://doi.org/10.1097/SHK.0000000000000945
        • Gitz Holler J.
        • Jensen H.K.
        • Henriksen D.P.
        • et al.
        Etiology of shock in the emergency department: a 12-year population-based cohort study.
        Shock. 2019; 51: 60-67https://doi.org/10.1097/SHK.0000000000000816
        • Bellumkonda L.
        • Gul B.
        • Masri S.C.
        Evolving concepts in diagnosis and Management of Cardiogenic Shock.
        Am J Cardiol. 2018; 122: 1104-1110https://doi.org/10.1016/j.amjcard.2018.05.040
        • Hochman J.S.
        • Sleeper L.A.
        • Webb J.G.
        • et al.
        Early revascularization in acute myocardial infarction complicated by cardiogenic SHOCK. SHOCK investigators. Should we emergently Revascularize occluded coronaries for cardiogenic shock.
        N Engl J Med. 1999; 341: 625-634https://doi.org/10.1056/NEJM199908263410901
        • Jones T.L.
        • Nakamura K.
        • McCabe J.M.
        Cardiogenic shock: evolving definitions and future directions in management.
        Open Heart. 2019; 6e000960https://doi.org/10.1136/openhrt-2018-000960
        • van Diepen S.
        • Katz J.N.
        • Albert N.M.
        • et al.
        Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association.
        Circulation. 2017; 136https://doi.org/10.1161/CIR.0000000000000525
        • Harjola V.-P.
        • Lassus J.
        • Sionis A.
        • et al.
        Clinical picture and risk prediction of short-term mortality in cardiogenic shock.
        Eur J Heart Fail. 2015; 17: 501-509https://doi.org/10.1002/ejhf.260
        • Cyrus Vahdatpour
        • David Collins
        • Sheldon Goldberg
        Cardiogenic shock.
        J Am Heart Assoc. 2019; 8e011991https://doi.org/10.1161/JAHA.119.011991
        • Levy B.
        • Bastien O.
        • Karim B.
        • et al.
        Experts’ recommendations for the management of adult patients with cardiogenic shock.
        Ann Intensive Care. 2015; 5: 52https://doi.org/10.1186/s13613-015-0052-1
        • Khalid L.
        • Dhakam S.H.
        A review of cardiogenic shock in acute myocardial infarction.
        Curr Cardiol Rev. 2008; 4: 34-40https://doi.org/10.2174/157340308783565456
        • Alpert J.S.
        • Becker R.C.
        Cardiogenic shock: elements of etiology, diagnosis, and therapy.
        Clin Cardiol. 1993; 16: 182-190https://doi.org/10.1002/clc.4960160305
        • Hochman J.S.
        • Boland J.
        • Sleeper L.A.
        • et al.
        Current spectrum of cardiogenic shock and effect of early revascularization on mortality. Results of an international registry. SHOCK registry investigators.
        Circulation. 1995; 91: 873-881https://doi.org/10.1161/01.cir.91.3.873
        • Hochman J.S.
        • Buller C.E.
        • Sleeper L.A.
        • et al.
        Cardiogenic shock complicating acute myocardial infarction--etiologies, management and outcome: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK?.
        J Am Coll Cardiol. 2000; 36: 1063-1070https://doi.org/10.1016/s0735-1097(00)00879-2
        • Sleeper L.A.
        • Reynolds H.R.
        • White H.D.
        • Webb J.G.
        • Dzavík V.
        • Hochman J.S.
        A severity scoring system for risk assessment of patients with cardiogenic shock: a report from the SHOCK trial and registry.
        Am Heart J. 2010; 160: 443-450https://doi.org/10.1016/j.ahj.2010.06.024
        • Sakamoto K.
        • Matoba T.
        • Mohri M.
        • et al.
        Clinical characteristics and prognostic factors in acute coronary syndrome patients complicated with cardiogenic shock in Japan: analysis from the Japanese Circulation Society cardiovascular shock registry.
        Heart Vessels. 2019; 34: 1241-1249https://doi.org/10.1007/s00380-019-01354-9
        • Fox K.A.A.
        • Steg P.G.
        • Eagle K.A.
        • et al.
        Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006.
        JAMA. 2007; 297: 1892-1900https://doi.org/10.1001/jama.297.17.1892
        • Kohsaka S.
        • Menon V.
        • Lowe A.M.
        • et al.
        Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock.
        Arch Intern Med. 2005; 165: 1643-1650https://doi.org/10.1001/archinte.165.14.1643
        • Debrunner M.
        • Schuiki E.
        • Minder E.
        • et al.
        Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock.
        Clin Res Cardiol. 2008; 97: 298-305https://doi.org/10.1007/s00392-007-0626-5
        • Reynolds H.R.
        • Hochman J.S.
        Cardiogenic shock: current concepts and improving outcomes.
        Circulation. 2008; 117: 686-697https://doi.org/10.1161/CIRCULATIONAHA.106.613596
        • Martindale J.L.
        • Wakai A.
        • Collins S.P.
        • et al.
        Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis.
        Acad Emerg Med. 2016; 23: 223-242https://doi.org/10.1111/acem.12878
        • Long B.
        • Koyfman A.
        • Gottlieb M.
        Diagnosis of acute heart failure in the emergency department: an evidence-based review.
        West J Emerg Med. 2019; 20: 875-884https://doi.org/10.5811/westjem.2019.9.43732
        • Patch R.
        • Cartin-Ceba R.
        • Yilmaz M.
        • Afessa B.
        • Gajic O.
        Accuracy of the physical exam in the differentiation of shock syndromes.
        CHEST. 2007; 132: 561Ahttps://doi.org/10.1378/chest.132.4_MeetingAbstracts.561
        • Vazquez R.
        • Gheorghe C.
        • Kaufman D.
        • Manthous C.A.
        Accuracy of bedside physical examination in distinguishing categories of shock: a pilot study.
        J Hosp Med. 2010; 5: 471-474https://doi.org/10.1002/jhm.695
        • Shah P.
        • Cowger J.A.
        Cardiogenic shock.
        Crit Care Clin. 2014; 30: 391-412https://doi.org/10.1016/j.ccc.2014.03.001
        • Menon V.
        • White H.
        • LeJemtel T.
        • Webb J.G.
        • Sleeper L.A.
        • Hochman J.S.
        The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK?.
        J Am Coll Cardiol. 2000; 36: 1071-1076https://doi.org/10.1016/s0735-1097(00)00874-3
        • Butman S.M.
        • Ewy G.A.
        • Standen J.R.
        • Kern K.B.
        • Hahn E.
        Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension.
        J Am Coll Cardiol. 1993; 22: 968-974https://doi.org/10.1016/0735-1097(93)90405-p
        • Klein T.
        • Ramani G.V.
        Assessment and management of cardiogenic shock in the emergency department.
        Cardiol Clin. 2012; 30: 651-664https://doi.org/10.1016/j.ccl.2012.07.004
        • Menon V.
        • Slater J.N.
        • White H.D.
        • Sleeper L.A.
        • Cocke T.
        • Hochman J.S.
        Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry.
        Am J Med. 2000; 108: 374-380https://doi.org/10.1016/s0002-9343(00)00310-7
        • Ponikowski P.
        • Voors A.A.
        • Anker S.D.
        • et al.
        2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC.
        Eur Heart J. 2016; 37: 2129-2200https://doi.org/10.1093/eurheartj/ehw128
        • Seeto R.K.
        • Fenn B.
        • Rockey D.C.
        Ischemic hepatitis: clinical presentation and pathogenesis.
        Am J Med. 2000; 109: 109-113https://doi.org/10.1016/S0002-9343(00)00461-7
        • Jäntti T.
        • Tarvasmäki T.
        • Harjola V.-P.
        • et al.
        Hypoalbuminemia is a frequent marker of increased mortality in cardiogenic shock.
        PLoS One. 2019; 14https://doi.org/10.1371/journal.pone.0217006
        • Jarai R.
        • Fellner B.
        • Haoula D.
        • et al.
        Early assessment of outcome in cardiogenic shock: relevance of plasma N-terminal pro-B-type natriuretic peptide and interleukin-6 levels.
        Crit Care Med. 2009; 37: 1837-1844https://doi.org/10.1097/CCM.0b013e31819fe896
        • Kataja A.
        • Tarvasmäki T.
        • Lassus J.
        • et al.
        The association of admission blood glucose level with the clinical picture and prognosis in cardiogenic shock - results from the CardShock study.
        Int J Cardiol. 2017; 226: 48-52https://doi.org/10.1016/j.ijcard.2016.10.033
        • Abdin A.
        • Pöss J.
        • Fuernau G.
        • et al.
        Prognostic impact of baseline glucose levels in acute myocardial infarction complicated by cardiogenic shock—a substudy of the IABP-SHOCK II-trial [corrected].
        Clin Res Cardiol. 2018; 107: 517-523https://doi.org/10.1007/s00392-018-1213-7
        • Tolppanen H.
        • Rivas-Lasarte M.
        • Lassus J.
        • et al.
        Combined measurement of soluble ST2 and amino-terminal pro-B-type natriuretic peptide provides early assessment of severity in cardiogenic shock complicating acute coronary syndrome.
        Crit Care Med. 2017; 45: e666-e673https://doi.org/10.1097/CCM.0000000000002336
      1. Lemm H, Prondzinsky R, Geppert A, et al. BNP and NT-proBNP in patients with acute myocardial infarction complicated by cardiogenic shock: results from the IABP shock trial. Crit Care 2010;14(1):P146. doi:https://doi.org/10.1186/cc8378.

        • O’Brien C.
        • Beaubien-Souligny W.
        • Amsallem M.
        • Denault A.
        • Haddad F.
        Cardiogenic shock: reflections at the crossroad between perfusion, tissue hypoxia, and mitochondrial function.
        Can J Cardiol. 2020; 36: 184-196https://doi.org/10.1016/j.cjca.2019.11.020
        • Tehrani B.N.
        • Truesdell A.G.
        • Sherwood M.W.
        • et al.
        Standardized team-based Care for Cardiogenic Shock.
        J Am Coll Cardiol. 2019; 73: 1659-1669https://doi.org/10.1016/j.jacc.2018.12.084
        • Jolly S.S.
        • Shenkman H.
        • Brieger D.
        • et al.
        Quantitative troponin and death, cardiogenic shock, cardiac arrest and new heart failure in patients with non-ST-segment elevation acute coronary syndromes (NSTE ACS): insights from the global registry of acute coronary events.
        Heart. 2011; 97: 197-202https://doi.org/10.1136/hrt.2010.195511
        • Tarvasmäki T.
        • Haapio M.
        • Mebazaa A.
        • et al.
        Acute kidney injury in cardiogenic shock: definitions, incidence, haemodynamic alterations, and mortality.
        Eur J Heart Fail. 2018; 20: 572-581https://doi.org/10.1002/ejhf.958
        • Jäntti T.
        • Tarvasmäki T.
        • Harjola V.-P.
        • et al.
        Frequency and prognostic significance of abnormal liver function tests in patients with cardiogenic shock.
        Am J Cardiol. 2017; 120: 1090-1097https://doi.org/10.1016/j.amjcard.2017.06.049
        • Jung C.
        • Fuernau G.
        • Eitel I.
        • et al.
        Incidence, laboratory detection and prognostic relevance of hypoxic hepatitis in cardiogenic shock.
        Clin Res Cardiol. 2017; 106: 341-349https://doi.org/10.1007/s00392-016-1060-3
        • Vallabhajosyula S.
        • Patlolla S.H.
        • Verghese D.
        • et al.
        Burden of arrhythmias in acute myocardial infarction complicated by cardiogenic shock.
        Am J Cardiol. 2020; 125: 1774-1781https://doi.org/10.1016/j.amjcard.2020.03.015
        • Collins S.P.
        • Lindsell C.J.
        • Storrow A.B.
        • Abraham W.T.
        ADHERE scientific advisory committee, investigators and study group. Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure.
        Ann Emerg Med. 2006; 47: 13-18https://doi.org/10.1016/j.annemergmed.2005.04.003
        • Perera P.
        • Mailhot T.
        • Riley D.
        • Mandavia D.
        The RUSH exam: rapid ultrasound in SHock in the evaluation of the critically lll.
        Emerg Med Clin North Am. 2010; 28 (vii): 29-56
        • Ünlüer E.E.
        • Karagöz A.
        • Akoğlu H.
        • Bayata S.
        Visual estimation of bedside echocardiographic ejection fraction by emergency physicians.
        West J Emerg Med. 2014; 15: 221-226https://doi.org/10.5811/westjem.2013.9.16185
        • Ramanathan K.
        • Harkness S.M.
        • Nayar A.C.
        • et al.
        887–2 Cardiogenic shock in patients with preserved left ventricular systolic function: Characteristics and insight into mechanisms.
        Journal of the American College of Cardiology. 2004; 43: A241https://doi.org/10.1016/S0735-1097(04)91027-3
        • Kircher B.J.
        • Himelman R.B.
        • Schiller N.B.
        Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava.
        Am J Cardiol. 1990; 66: 493-496https://doi.org/10.1016/0002-9149(90)90711-9
        • Wooten W.M.
        • Shaffer L.E.T.
        • Hamilton L.A.
        Bedside ultrasound versus chest radiography for detection of pulmonary edema: a prospective cohort study.
        J Ultrasound Med. 2019; 38: 967-973https://doi.org/10.1002/jum.14781
        • Keikha M.
        • Salehi-Marzijarani M.
        • Soldoozi Nejat R.
        • Sheikh Motahar Vahedi H.
        • Mirrezaie S.M.
        Diagnostic Accuracy of Rapid Ultrasound in Shock (RUSH) Exam; A Systematic Review and Meta-analysis.
        Bull Emerg Trauma. 2018; 6: 271-278https://doi.org/10.29252/beat-060402
        • Wilcox S.R.
        • Kabrhel C.
        • Channick R.N.
        Pulmonary hypertension and right ventricular failure in emergency medicine.
        Ann Emerg Med. 2015; 66: 619-628https://doi.org/10.1016/j.annemergmed.2015.07.525
        • Millington S.J.
        • Arntfield R.T.
        Advanced point-of-care cardiac ultrasound examination: Doppler applications, Valvular assessment, and advanced right heart examination.
        Glob Heart. 2013; 8: 305-312https://doi.org/10.1016/j.gheart.2013.11.003
        • Schneider M.
        • Binder T.
        Echocardiographic evaluation of the right heart.
        Wien Klin Wochenschr. 2018; 130: 413-420https://doi.org/10.1007/s00508-018-1330-3
        • Tan C.
        • Rubenson D.
        • Srivastava A.
        • et al.
        Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort.
        Cardiovasc Ultrasound. 2017; 15: 18https://doi.org/10.1186/s12947-017-0109-4
        • Blanco P.
        • Aguiar F.M.
        • Blaivas M.
        Rapid ultrasound in shock (RUSH) velocity-time integral.
        J Ultrasound Med. 2015; 34: 1691-1700https://doi.org/10.7863/ultra.15.14.08059
        • Vincent J.-L.
        • De Backer D.
        Circulatory shock. Finfer SR, Vincent J-L, eds.
        N Engl J Med. 2013; 369: 1726-1734https://doi.org/10.1056/NEJMra1208943
        • Shepherd S.J.
        • Pearse R.M.
        Role of central and mixed venous oxygen saturation measurement in perioperative care.
        Anesthesiology. 2009; 111: 649-656https://doi.org/10.1097/ALN.0b013e3181af59aa
        • Bracht H.
        • Hänggi M.
        • Jeker B.
        • et al.
        Incidence of low central venous oxygen saturation during unplanned admissions in a multidisciplinary intensive care unit: an observational study.
        Crit Care. 2007; 11: R2https://doi.org/10.1186/cc5144
        • Ander D.S.
        • Jaggi M.
        • Rivers E.
        • et al.
        Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department.
        Am J Cardiol. 1998; 82: 888-891https://doi.org/10.1016/S0002-9149(98)00497-4
        • De Backer D.
        • Biston P.
        • Devriendt J.
        • et al.
        Comparison of dopamine and norepinephrine in the treatment of shock.
        New England Journal of Medicine. 2010; 362: 779-789https://doi.org/10.1056/NEJMoa0907118
        • Werdan K.
        • Ruß M.
        • Buerke M.
        • Delle-Karth G.
        • Geppert A.
        • Schöndube F.A.
        Cardiogenic shock due to myocardial infarction: diagnosis, Monitoring and Treatment.
        Dtsch Arztebl Int. 2012; 109: 343-351https://doi.org/10.3238/arztebl.2012.0343
        • Jentzer J.C.
        • Coons J.C.
        • Link C.B.
        • Schmidhofer M.
        Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit.
        J Cardiovasc Pharmacol Ther. 2015; 20: 249-260https://doi.org/10.1177/1074248414559838
        • Burstein B.
        • Tabi M.
        • Barsness G.W.
        • Bell M.R.
        • Kashani K.
        • Jentzer J.C.
        Association between mean arterial pressure during the first 24 hours and hospital mortality in patients with cardiogenic shock.
        Crit Care. 2020; 24https://doi.org/10.1186/s13054-020-03217-6
        • Levy B.
        • Clere-Jehl R.
        • Legras A.
        • et al.
        Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction.
        J Am Coll Cardiol. 2018; 72: 173-182https://doi.org/10.1016/j.jacc.2018.04.051
        • Alviar C.L.
        • Miller P.E.
        • McAreavey D.
        • et al.
        Positive pressure ventilation in the cardiac intensive care unit.
        J Am Coll Cardiol. 2018; 72: 1532-1553https://doi.org/10.1016/j.jacc.2018.06.074
        • Jaber S.
        • Amraoui J.
        • Lefrant J.-Y.
        • et al.
        Clinical practice and risk factors for immediate complications of endotracheal intubation in the intensive care unit: a prospective, multiple-center study*.
        Crit Care Med. 2006; 34: 2355-2361https://doi.org/10.1097/01.CCM.0000233879.58720.87
        • Heffner A.C.
        • Swords D.S.
        • Neale M.N.
        • Jones A.E.
        Incidence and factors associated with cardiac arrest complicating emergency airway management.
        Resuscitation. 2013; 84: 1500-1504https://doi.org/10.1016/j.resuscitation.2013.07.022
        • Schwartz D.E.
        • Matthay M.A.
        • Cohen N.H.
        Death and other complications of emergency airway Management in Critically ill Adults a Prospective Investigation of 297 tracheal intubations.
        Anesthes. 1995; 82: 367-376
        • Makdee O.
        • Monsomboon A.
        • Surabenjawong U.
        • et al.
        High-Flow Nasal Cannula Versus Conventional Oxygen Therapy in Emergency Department Patients With Cardiogenic Pulmonary Edema: A Randomized Controlled Trial.
        Ann Emerg Med. 2017; 70 (465–472.e2)https://doi.org/10.1016/j.annemergmed.2017.03.028
        • Masip J.
        • Peacock W.F.
        • Price S.
        • et al.
        Indications and practical approach to non-invasive ventilation in acute heart failure.
        Eur Heart J. 2018; 39: 17-25https://doi.org/10.1093/eurheartj/ehx580
        • Berbenetz N.
        • Wang Y.
        • Brown J.
        • et al.
        Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema.
        Cochrane Database Syst Rev. 2019; 4https://doi.org/10.1002/14651858.CD005351.pub4
        • Hochman J.S.
        • Sleeper L.A.
        • Webb J.G.
        • et al.
        Early revascularization and Long-term survival in cardiogenic shock complicating acute myocardial infarction.
        JAMA. 2006; 295: 2511-2515https://doi.org/10.1001/jama.295.21.2511