Advertisement

Role of levosimendan in the management of subarachnoid hemorrhage

  • Giolanda Varvarousi
    Correspondence
    Corresponding author at: 11 Rodopis Street, 14561, Athens, Greece. Tel.: +30 6938495109; fax: +30 213 20 86 000.
    Affiliations
    Intensive Care Unit, KAT Hospital, Athens, Greece
    Search for articles by this author
  • Author Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Theodoros Xanthos
    Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Affiliations
    National and Kapodistrian University of Athens, Medical School, MSc “Cardiopulmonary Resuscitation”, Athens, Greece
    Search for articles by this author
  • Author Footnotes
    2 KAT Hospital, 2 Nikis street, 14561, Athens, Greece.
    Pavlina Sarafidou
    Footnotes
    2 KAT Hospital, 2 Nikis street, 14561, Athens, Greece.
    Affiliations
    Intensive Care Unit, KAT Hospital, Athens, Greece
    Search for articles by this author
  • Author Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Ellisavet Katsioula
    Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Affiliations
    Intensive Care Unit, KAT Hospital, Athens, Greece
    Search for articles by this author
  • Marianthi Georgiadou
    Affiliations
    Intensive Care Unit, KAT Hospital, Athens, Greece
    Search for articles by this author
  • Author Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Maria Eforakopoulou
    Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Affiliations
    Intensive Care Unit, KAT Hospital, Athens, Greece
    Search for articles by this author
  • Author Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Hlias Pavlou
    Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    Affiliations
    Intensive Care Unit, KAT Hospital, Athens, Greece
    Search for articles by this author
  • Author Footnotes
    1 University of Athens, Medical School, Greece, 75 Mikras Asias street, 11527, Athens, Greece.
    2 KAT Hospital, 2 Nikis street, 14561, Athens, Greece.
Published:November 16, 2015DOI:https://doi.org/10.1016/j.ajem.2015.11.024

      Abstract

      Aneurysmal subarachnoid hemorrhage (aSAH) is one of the leading causes of neurologic disability accounting for dismal long term survival rates. aSAH leads to a sudden increase in intracranial pressure and a massive sympathetic discharge. Excessive sympathetic stimulation leads to catecholamine mediated myocardial dysfunction and hemodynamic instability which may critically hamper brain perfusion and oxygenation. In the setting of acute aSAH, administration of vasoactive drugs aims at stabilizing impaired hemodynamics. However, studies have shown that conventional treatment with vasoactive drugs that lead to Ca+2 overload and increase myocardial oxygen consumption, fail to restore hemodynamics and decrease cerebral blood flow. Levosimendan is a non-adrenergic inotropic Ca+2 sensitizer with not only beneficial hemodynamic properties but also pleiotropic effects, contributing to its cardioprotective and neuroprotective role. Although there have been limited data available regarding the use of levosimendan in patients with aSAH, current evidence suggests that levosimendan may have a role in the setting of post-aSAH cardiomyopathy and decreased cerebral blood flow both in the emergency departments and in intensive care units. The purpose of this review is to provide an overview of studies of levosimendan therapy for aSAH, and describe current knowledge about the effects of levosimendan in the management of aSAH.
      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hackett M.L.
        • Anderson C.S.
        Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study: the Australian Cooperative Research on Subarachnoid Hemorrhage Study Group.
        Neurology. 2000; 55: 658-662
        • Chen S.
        • Feng H.
        • Sherchan P.
        • Klebe D.
        • Zhao G.
        • Sun X.
        • et al.
        Controversies and evolving new mechanisms in subarachnoid hemorrhage.
        Prog Neurobiol. 2014; 115: 64-91
        • Moussouttas M.
        • Huynh T.T.
        • Khoury J.
        • Lai E.W.
        • Dombrowski K.
        • Pello S.
        • et al.
        Cerebrospinal fluid catecholamine levels as predictors of outcome in subarachnoid hemorrhage.
        Cerebrovasc Dis. 2012; 33: 173-181
        • Papanikolaou J.
        • Tsolaki V.
        • Makris D.
        • Zakynthinos E.
        Early levosimendan administration may improve outcome in patients with subarachnoid hemorrhage complicated by acute heart failure.
        Int J Cardiol. 2014; 176: 1435-1437
        • Moiseyev V.S.
        • Poder P.
        • Andrejevs N.
        • Ruda M.Y.
        • Golikov A.P.
        • Lazebnik L.B.
        • et al.
        Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN).
        Eur Heart J. 2002; 23: 1422-1432
        • Keyrouz S.G.
        • Diringer M.N.
        Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage.
        Crit Care. 2007; 11: 220-230
        • Arias A.M.
        • Oberti P.F.
        • Pizarro R.
        • Falconi M.L.
        • de Arenaza D.P.
        • Zeffiro S.
        • et al.
        Dobutamine-precipitated takotsubo cardiomyopathy mimicking acute myocardial infarction.
        Circulation. 2011; 124: 312-315
        • Busani S.
        • Rinaldi L.
        • Severino C.
        • Cobelli M.
        • Pasetto A.
        • Girardis M.
        Levosimendan in cardiac failure after subarachnoid hemorrhage.
        J Trauma. 2010; 68: E108-E110
        • Endoh M.
        Mechanism of action of Ca2+ sensitizers—update. Cardiovasc Drugs Ther 2001;15:397–403. [See comment in PubMed Commons bel10] Taccone FS, Brasseur A, Vincent JL, De Backer D. Levosimendan for the treatment of subarachnoid hemorrhage-related cardiogenic shock.
        Intensive Care Med. 2013; 39: 1497-1498
        • Llorens-Soriano P.
        • Carbajosa-Dalmaua J.
        • Fernández-Cañadasa J.
        • Murcia Zaragoza J.
        • Climent-Payá V.
        • Laghzaouia F.
        • et al.
        Clinical experience with levosimendan in the emergency department of a tertiary care hospital.
        Rev Esp Cardiol. 2007; 60: 878-882
        • King C.
        Listening to the head and not the heart: subarachnoid haemorrhage associated with severe acute left ventricular failure.
        BMJ Case Rep. 2013; 29: 2013-2017
        • Naidech A.M.
        • Kreiter K.T.
        • Janjua N.
        • Ostapkovich N.D.
        • Parra A.
        • Commichau C.
        • et al.
        Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage.
        Circulation. 2005; 112: 2851-2856
        • Zaroff J.G.
        • Rordorf G.A.
        • Ogilvy C.S.
        • Picard M.H.
        Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury.
        J Am Soc Echocardiogr. 2000; 13: 774-779
        • Elrifai A.M.
        • Bailes J.E.
        • Shih S.R.
        • Dianzumba S.
        • Brillman J.
        Characterization of the cardiac effects of acute subarachnoid hemorrhage in dogs.
        Stroke. 1996; 27: 737-741
        • Wittstein I.S.
        • Thiemann D.R.
        • Lima J.A.
        • Baughman K.L.
        • Schulman S.P.
        • Gerstenblith G.
        • et al.
        Neurohumoral features of myocardial stunning due to sudden emotional stress.
        N Engl J Med. 2005; 352: 539-548
        • Lyon A.R.
        • Rees P.S.
        • Prasad S.
        • Poole-Wilson P.A.
        • Harding S.E.
        Stress (takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine- induced acute myocardial stunning.
        Nat Clin Pract Cardiovasc Med. 2008; 5: 22-29
        • Kitagawa Y.
        • Yamashita D.
        • Ito H.
        • Takaki M.
        Reversible effects of isoproterenol induced hypertrophy on in situ left ventricular function in rat hearts.
        Am J Physiol Heart Circ Physiol. 2004; 287: H277-H285
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • Baker M.
        • Limana F.
        • Chimenti S.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • van den Bergh W.M.
        • Algra A.
        • Rinkel G.J.
        Electrocardiographic abnormalities and serum magnesium in patients with subarachnoid hemorrhage.
        Stroke. 2004; 35: 644-648
        • Baroldi G.
        • Mittleman R.E.
        • Parolini M.
        • Silver M.D.
        • Fineschi V.
        Myocardial contraction bands. Definition, quantification and significance in forensic pathology.
        Int J Legal Med. 2001; 115: 142-151
        • Grad A.
        • Kiauta T.
        • Osredkar J.
        Effect of elevated plasma norepinephrine on electrocardiographic changes in subarachnoid hemorrhage.
        Stroke. 1991; 22: 746-749
        • Melville K.I.
        • Blum B.
        • Shister H.E.
        • Silver M.D.
        Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation.
        Am J Cardiol. 1963; 12: 781-789
        • Wu L.L.
        • Yang S.L.
        • Yang R.C.
        • Hsu H.K.
        • Hsu C.
        • Dong L.W.
        • et al.
        G protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis.
        Shock. 2003; 19: 533-537
        • Xiao R.P.
        • Zhang S.J.
        • Chakir K.
        • Avdonin P.
        • Zhu W.
        • Bond R.A.
        • et al.
        Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR)—but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts.
        Circulation. 2003; 108: 1633-1639
        • Heubach J.F.
        • Blaschke M.
        • Harding S.E.
        • Ravens U.
        • Kaumann A.J.
        Cardiostimulant and cardiodepressant effects through overexpressed human 2-adrenoceptors in murine heart: regional differences and functional role of beta1-adrenoceptors.
        Naunyn Schmiedebergs Arch Pharmacol. 2003; 367: 380-390
        • Lyon A.R.
        • Rees P.S.
        • Prasad S.
        • Poole-Wilson P.A.
        • Harding S.E.
        Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypo thesis to explain catecholamine induced acute myocardial stunning.
        Nat Clin Pract Cardiovasc Med. 2008; 5: 22-29
        • Heck D.A.
        • Bylund D.B.
        Mechanism of down-regulation of alpha-2 adrenergic receptor subtypes.
        J Pharmacol Exp Ther. 1997; 282: 1219-1227
        • Prunet B.
        • Basely M.
        • D'Aranda E.
        • Cambefort P.
        • Pons F.
        • Cimarelli S.
        • et al.
        Impairment of cardiac metabolism and sympathetic innervation after aneurysmal subarachnoid hemorrhage: a nuclear medicine imaging study.
        Crit Care. 2014; 18: R131-R140
        • Wang Y.Y.
        • Lin S.Y.
        • Chuang Y.H.
        • Sheu W.H.
        • Tung K.C.
        • Chen C.J.
        Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats.
        Endocrinology. 2014; 155: 1235-1246
        • Clutter W.E.
        • Bier D.M.
        • Shah S.D.
        • Cryer P.E.
        Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man.
        J Clin Invest. 1980; 66: 94-101
        • Lipowsky H.H.
        Microvascular rheology and hemodynamics.
        Microcirculation. 2005; 12: 5-15
        • Kumari S.
        • Anderson L.
        • Farmer S.
        • Mehta S.L.
        • Li P.A.
        Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion.
        Transl Stroke Res. 2012; 3: 296-304
        • Dilsizian V.
        • Bateman T.M.
        • Bergmann S.R.
        • Des Prez R.
        • Magram M.Y.
        • Goodbody A.E.
        • et al.
        Metabolic imaging with betamethyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia.
        Circulation. 2005; 112: 2169-2174
        • Thompson J.A.
        • Hess M.L.
        The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis.
        Prog Cardiovasc Dis. 1986; 28: 449-462
        • Behonick G.S.
        • Novak M.J.
        • Nealley E.W.
        • Baskin S.I.
        Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes).
        J Appl Toxicol. 2001; 21: S15-S22
        • Neri M.
        • Cerretani D.
        • Fiaschi A.I.
        • Laghi P.F.
        • Lazzerini P.E.
        • Maffione A.B.
        • et al.
        Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats.
        J Cell Mol Med. 2007; 11: 156-170
        • Heubach J.F.
        • Ravens U.
        • Kaumann A.J.
        Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart.
        Mol Pharmacol. 2004; 65: 1313-1322
        • Kohsaka S.
        • Menon V.
        • Lowe A.M.
        • Lange M.
        • Dzavik V.
        • Sleeper L.A.
        • et al.
        Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock.
        Arch Intern Med. 2005; 165: 1643-1650
        • Sakr Y.L.
        • Ghosn I.
        • Vincent J.L.
        Cardiac manifestations after subarachnoid hemorrhage: a systematic review of the literature.
        Prog Cardiovasc Dis. 2002; 45: 67-80
        • Aydin M.D.
        • Kanat A.
        • Yilmaz A.
        • Cakir M.
        • Emet M.
        • Cakir Z.
        • et al.
        The role of ischemic neurodegeneration of the nodose ganglia on cardiac arrest after subarachnoid hemorrhage: an experimental study.
        Exp Neurol. 2011; 230: 90-95
        • Huang C.C.
        • Huang C.H.
        • Kuo H.Y.
        • Chan C.M.
        • Chen J.H.
        • Chen W.L.
        The 12-lead electrocardiogram in patients with subarachnoid hemorrhage: early risk prognostication.
        Am J Emerg Med. 2012; 30: 732-736
        • Mayer S.A.
        • Fink M.E.
        • Homma S.
        • Sherman D.
        • LiMandri G.
        • Lennihan L.
        • et al.
        Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage.
        Neurology. 1994; 44: 815-820
        • Papanikolaou J.
        • Makris D.
        • Karakitsos D.
        • Saranteas T.
        • Karabinis A.
        • Kostopanagiotou G.
        • et al.
        Cardiac and central vascular functional alterations in the acute phase of aneurysmal subarachnoid hemorrhage.
        Crit Care Med. 2012; 40: 223-232
        • Deehan S.C.
        • Grant I.S.
        Haemodynamic changes in neurogenic pulmonary oedema: effect of dobutamine.
        Intensive Care Med. 1996; 22: 672-676
        • Naidech A.
        • Du Y.
        • Kreiter K.T.
        • Parra A.
        • Fitzsimmons B.F.
        • Lavine S.D.
        • et al.
        Dobutamine versus milrinone after subarachnoid hemorrhage.
        Neurosurgery. 2005; 56: 21-26
        • Despas F.
        • Trouillet C.
        • Franchitto N.
        • Labrunee M.
        • Galinier M.
        • Senard J.M.
        • et al.
        Levosimedan improves hemodynamics functions without sympathetic activation in severe heart failure patients: direct evidence from sympathetic neural recording.
        Acute Card Care. 2010; 12: 25-30
        • Margey R.
        • Diamond P.
        • McCann H.
        • Sugrue D.
        Dobutamine stress echo induced apical ballooning syndrome.
        Eur J Echocardiogr. 2009; 10: 395-399
        • Saito R.
        • Takahashi T.
        • Noshita N.
        • Narisawa A.
        • Negi K.
        • Takei K.
        • et al.
        Takotsubo cardiomyopathy induced by dobutamine infusion during hypertensive therapy for symptomaticvasospasm after subarachnoid hemorrhage—case report.
        Neurol Med Chir (Tokyo). 2010; 50: 393-395
        • Lilleberg J.
        • Laine M.
        • Palkama T.
        • Kivikko M.
        • Pohjanjousi P.
        • Kupari M.
        Duration of the haemodynamic action of a 24-h infusion of levosimendan in patients with congestive heart failure.
        Eur J Heart Fail. 2007; 9: 75-82
        • Perrone S.V.
        • Kaplinsky E.J.
        Calcium sensitizer agents: a new class of inotropic agents in the treatment of decompensated heart failure.
        Int J Cardiol. 2005; 103: 248-255
        • McMurray J.J.
        • Adamopoulos S.
        • Anker S.D.
        • Auricchio A.
        • Böhm M.
        • Dickstein K.
        • et al.
        ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC.
        Eur Heart J. 2012; 33: 1787-1847
        • Antoniades C.
        • Antonopoulos A.S.
        • Tousoulis D.
        • Bakogiannis C.
        • Stefanadi E.
        • Stefanadis C.
        Relationship between the pharmacokinetics of levosimendan and its effects on cardiovascular system.
        Curr Drug Metab. 2009; 10: 95-103
        • Treskatsch S.
        • Balzer F.
        • Geyer T.
        • Spies C.D.
        • Kastrup M.
        • Grubitzsch H.
        • et al.
        Early levosimendan administration is associated with decreased mortality after cardiac surgery.
        J Crit Care. 2015; 30: 859.e1-859.e6
        • Paur H.
        • Wright P.T.
        • Sikkel M.B.
        • Tranter M.H.
        • Mansfield C.
        • O'Gara P.
        • et al.
        High levels of circuating epinephrine trigger apical cardiopression in a β-2 adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy.
        Circulation. 2012; 126: 697-706
        • Cleland J.G.
        • McGowan J.
        Levosimendan: a new era for inodilator therapy for heart failure?.
        Curr Opin Cardiol. 2002; 17: 257-265
        • Moiseyev V.S.
        • Põder P.
        • Andrejevs N.
        • Ruda M.Y.
        • Golikov A.P.
        • Lazebnik L.B.
        • et al.
        Safety and efficacy of a novel calcium sensitizer, levosimendan in patients with left ventricular due to an acute myocardial infarction. A randomized placebo-controlled double blind study (RUSSLAN).
        Eur Heart J. 2002; 23: 1422-1432
        • Aidonidis G.
        • Kanonidis I.
        • Koutsimanis V.
        • Neumann T.
        • Erbel R.
        • Sakadamis G.
        Efficiency and safety of prolonged levosimendan infusion in patients with acute heart failure.
        Cardiol Res Pract. 2011; 2011: 342302-342308
        • Slawsky M.T.
        • Colucci W.S.
        • Gottlieb S.S.
        • Greenberg B.H.
        • Haeusslein E.
        • Hare J.
        • et al.
        Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure.
        Circulation. 2000; 102: 2222-2227
        • Sonntag S.
        • Sundberg S.
        • Lehtonen L.A.
        • Kleber F.X.
        The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia.
        J Am Coll Cardiol. 2004; 43: 2177-2182
        • Wu X.
        • Wu J.
        • Yan X.
        • Zhang Y.
        Enhancement of myocardial function and reduction of injury with levosimendan after percutaneous coronary intervention for acute myocardial infarction: a pilot study.
        Cardiology. 2014; 128: 202-208
        • Avgeropoulou C.
        • Andreadou I.
        • Markantonis-Kyroudis S.
        • Demopoulou M.
        • Missovoulos P.
        • Androulakis A.
        • et al.
        The Ca2+−sensitizer levosimendan improves oxidative damage, BNP and pro-inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine.
        Eur J Heart Fail. 2005; 7: 882-887
        • Milligan D.J.
        • Fields A.M.
        Levosimendan: calcium sensitizer and inodilator.
        Anesthesiol Clin. 2010; 28: 753-760
        • Maytin M.
        • Colucci W.S.
        Cardioprotection: a new paradigm in the management of acute heart failure syndromes.
        Am J Cardiol. 2005; 96: 26G-31G
        • Parissis J.T.
        • Andreadou I.
        • Markantonis S.L.
        • Bistola V.
        • Louka A.
        • Pyriochou A.
        • et al.
        Effects of levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure.
        Atherosclerosis. 2007; 195: e210-e215
        • McCully J.D.
        • Levitsky S.
        Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection.
        Arch Biochem Biophys. 2003; 420: 237-245
        • Parissis J.T.
        • Adamopoulos S.
        • Antoniades C.
        • Kostakis G.
        • Rigas A.
        • Kyrzopoulos S.
        • et al.
        Effects of levosimendan on circulating pro-inflammatory cytokines and soluble apoptosis mediators in patients with decompensated advanced heart failure.
        Am J Cardiol. 2004; 93: 1309-1312
        • Cahill J.
        • Zhang J.H.
        Subarachnoid hemorrhage: is it time for a new direction?.
        Stroke. 2009; 40: 86-87
        • Suarez J.I.
        • Tarr R.W.
        • Selman W.R.
        Aneurysmal subarachnoid hemorrhage.
        N Engl J Med. 2006; 354: 387-396
        • Manno E.M.
        • Gress D.R.
        • Schwamm L.H.
        • Diringer M.N.
        • Ogilvy C.S.
        Effects of induced hypertension on transcranial Doppler ultrasound velocities in patients after subarachnoid hemorrhage.
        Stroke. 1998; 29: 422-428
        • Ayer R.E.
        • Zhang J.H.
        The clinical significance of acute brain injury in subarachnoid hemorrhage and opportunity for intervention.
        Acta Neurochir Suppl. 2008; 105: 179-184
        • Tung P.
        • Kopelnik A.
        • Banki N.
        • Ong K.
        • Ko N.
        • Lawton M.T.
        • et al.
        Predictors of neurocardiogenic injury after subarachnoid hemorrhage.
        Stroke. 2004; 35: 548-551
        • Özsavcí D.
        • Erşahin M.
        • Şener A.
        • Özakpinar Ö.B.
        • Toklu H.Z.
        • Akakín D.
        • et al.
        The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats.
        Neurosurgery. 2011; 68: 1699-1708
        • Liu Y.
        • Yang X.
        • Gong H.
        • Jiang B.
        • Wang H.
        • Xu G.
        • et al.
        Assessing the effects of norepinephrine on single cerebral microvessels using opticalresolution photoacoustic microscope.
        J Biomed Opt. 2013; 18: 76007
        • Claassen J.
        • Carhuapoma J.R.
        • Kreiter K.T.
        • Du E.Y.
        • Connolly E.S.
        • Mayer S.A.
        Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome.
        Stroke. 2002; 33: 1225-1232
        • Strandgaard S.
        • Paulson O.B.
        Cerebral autoregulation.
        Stroke. 1984; 15: 413-416
        • Basel H.
        • Kavak S.
        • Demir H.
        • Meral I.
        • Ekim H.
        • Bektas H.
        Effect of levosimendan injection on oxidative stress of rat myocardium.
        Toxicol Ind Health. 2013; 29: 435-440
        • Nelson M.T.
        • Quayle J.M.
        Physiological roles and properties of potassium channels in arterial smooth muscle.
        Am J Physiol. 1995; 268: C799-C822
        • Johansson P.I.
        • Haase N.
        • Perner A.
        • Ostrowski S.R.
        Association between sympathoadrenal activation, fibrinolysis, and endothelial damage in septic patients: a prospective study.
        J Crit Care. 2014; 29: 327-333
        • Ogura T.
        • Satoh A.
        • Ooigawa H.
        • Sugiyama T.
        • Takeda R.
        • Fushihara G.
        • et al.
        Characteristics and prognostic value of acute catecholamine surge in patients with aneurysmal subarachnoid hemorrhage.
        Neurol Res. 2012; 34: 484-490
        • Han J.
        • Kim N.
        • Joo H.
        • Kim E.
        • Earm Y.E.
        ATP sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes.
        Am J Physiol Heart Circ Physiol. 2002; 283: H1545-H1554
        • Sobey C.G.
        • Faraci F.M.
        Subarachnoid haemorrhage: what happens to the cerebral arteries.
        Clin Exp Pharmacol Physiol. 1998; 25: 867-876
        • Cengiz S.L.
        • Erdi M.F.
        • Tosun M.
        • Atalik E.
        • Avunduk M.C.
        • Sönmez F.C.
        • et al.
        Beneficial effects of levosimendan on cerebral vasospasm induced by subarachnoid haemorrhage: an experimental study.
        Brain Inj. 2010; 24: 877-885
        • Caner H.
        • Kwan A.L.
        • Bavbek M.
        • Kilinc K.
        • Durieux M.
        • Lee K.
        • et al.
        Systemic administration of mexiletine for attenuation of cerebral vasospasm following experimental subarachnoid haemorrhage.
        Acta Neurochir (Wien). 2000; 142: 455-461
        • Dreier J.P.
        • Major S.
        • Manning A.
        • Woitzik J.
        • Drenckhahn C.
        • Steinbrink J.
        • et al.
        Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurismal subarachnoid haemorrhage.
        Brain. 2009; 132: 1866-1881
        • Gwag B.J.
        • Canzoniero L.M.
        • Sensi S.L.
        • Demaro J.A.
        • Koh J.Y.
        • Goldberg M.P.
        • et al.
        Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons.
        Neuroscience. 1999; 90: 1339-1348
        • Barry C.
        • Turner R.J.
        • Corrigan F.
        • Vink R.
        New therapeutic approaches to subarachnoid hemorrhage.
        Expert Opin Investig Drugs. 2012; 21: 845-859
        • Rondeau N.
        • Cinotti R.
        • Rozec B.
        • Roquilly A.
        • Floch H.
        • Groleau N.
        • et al.
        Dobutamine-induced high cardiac index did not prevent vasospasm in subarachnoid hemorrhage patients: a randomized controlled pilot study.
        Neurocrit Care. 2012; 17: 183-190
        • Tonnesen E.
        • Wahlgreen C.
        Influence of extradural and general anaesthesia on natural killer cell activity and lymphocyte subpopulations in patients undergoing hysterectomy.
        Br J Anaesth. 1988; 60: 500-507
        • Fassbender K.
        • Hodapp B.
        • Rossol S.
        • Bertsch T.
        • Schmeck J.
        • Schütt S.
        • et al.
        Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries.
        J Neurol Neurosurg Psychiatry. 2001; 70: 534-537
        • Robertson C.S.
        • Valadka A.B.
        • Hannay H.J.
        • Contant C.F.
        • Gopinath S.P.
        • Cormio M.
        • et al.
        Prevention of secondary ischemic insults after severe head injury.
        Crit Care Med. 1999; 27: 2086-2095
        • Joseph M.
        • Ziadi S.
        • Nates J.
        • Dannenbaum M.
        • Malkoff M.
        Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow.
        Neurosurgery. 2003; 53: 1044-1051
        • Levy M.L.
        • Rabb C.H.
        • Zelman V.
        • Giannotta S.L.
        Cardiac performance enhancement from dobutamine in patients refractory to hypervolemic therapy for cerebral vasospasm.
        J Neurosurg. 1993; 79: 494-499
        • Konczalla J.
        • Mrosek J.
        • Wanderer S.
        • Schuss P.
        • Guresir E.
        • Seifert V.
        • et al.
        Functional effects of levosimendan in rat basilar arteries in vitro.
        Curr Neurovasc Res. 2013; 10: 126-133
        • Kelm R.F.
        • Wagenführer J.
        • Bauer H.
        • Schmidtmann I.
        • Engelhard K.
        • Noppens R.R.
        Effects of levosimendan on hemodynamics, local cerebral blood flow, neuronal injury, and neuroinflammation after asphyctic cardiac arrest in rats.
        Crit Care Med. 2014; 42: e410-e419
        • Kivikko M.
        • Kuoppamaki M.
        • Soinne L.
        • Sundberg S.
        • Pohjanjousi P.
        • Ellmen J.
        • et al.
        Oral levosimendan increases cerebral blood flow velocities in patients with a history of stroke or transient ischemic attack: a pilot safety study.
        Curr Ther Res Clin Exp. 2015; 77: 46-51
        • Bravo M.C.
        • López P.
        • Cabañas F.
        • Pérez-Rodríguez J.
        • Pérez-Fernández E.
        • Quero J.
        • et al.
        Acute effects of levosimendanon cerebral and systemic perfusion and oxygenation in newborns: an observational study.
        Neonatology. 2011; 99: 217-223
        • Levijoki J.
        • Kivikko M.
        • Pollesello P.
        • Sallinen J.
        • Hyttilä-Hopponen M.
        • Kuoppamäki M.
        • et al.
        Levosimendan alone and in combination with valsartan prevents stroke in Dahl salt-sensitive rats.
        Eur J Pharmacol. 2015; 750: 132-140
        • Hein M.
        • Zoremba N.
        • Bleilevens C.
        • Bruells C.
        • Rossaint R.
        • Roehl A.B.
        Levosimendan limits reperfusion injury in a rat middle cerebral artery occlusion (MCAO) model.
        BMC Neurol. 2013; 13: 106-114
        • Lafci B.
        • Yasa H.
        • Ilhan G.
        • Ortac R.
        • Yilik L.
        • Kestelli M.
        • et al.
        Protection of the spinal cord from ischemia: comparative effects of levosimendan and iloprost.
        Eur Surg Res. 2008; 41: 1-7
        • Roehl A.B.
        • Hein M.
        • Loetscher P.D.
        • Rossaint J.
        • Weis J.
        • Rossaint R.
        • et al.
        Neuroprotective properties of levosimendan in an in vitro model of traumatic brain injury.
        BMC Neurol. 2010; 10: 97-101
        • Katircioglu S.F.
        • Seren M.
        • Parlar A.I.
        • Turan N.N.
        • Manavbasi Y.
        • Aydog G.
        • et al.
        Levosimendan effect on spinal cord ischemia-reperfusion injury following aortic clamping.
        J Card Surg. 2008; 23: 44-48