Advertisement

Thromboelastography for prediction of hemorrhagic transformation in patients with acute ischemic stroke

  • Gina Yu
    Affiliations
    Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

    Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
    Search for articles by this author
  • Youn-Jung Kim
    Affiliations
    Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

    Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
    Search for articles by this author
  • Sang-Beom Jeon
    Affiliations
    Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea

    Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
    Search for articles by this author
  • Won Young Kim
    Correspondence
    Corresponding author at: Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505, Republic of Korea.
    Affiliations
    Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

    Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
    Search for articles by this author

      Abstract

      Background

      Thromboelastography (TEG) provides a rapid assessment of the hemostatic processes of a patient in emergency settings. There are limited data on TEG as a predictive tool for hemorrhagic transformation in patients with acute ischemic stroke. We investigated whether TEG values on admission could predict hemorrhagic transformation in patients with acute ischemic stroke.

      Methods

      TEG was performed prospectively in 772 patients who satisfied the criteria of the critical pathway for acute stroke that have neurologic symptoms in 6 h at the emergency department between March and December 2018. After excluding 114 patients, 628 patients were evaluated, and finally, 205 patients with acute ischemic stroke were included. The primary outcome is hemorrhagic transformation, defined as the presence of blood in brain on follow-up imaging study and secondary outcome is neurological deterioration, defined as a 2-point increase on the National Institutes of Health Stroke Scale (NIHSS) within 72 h of stroke onset.

      Results

      Of the 205 ischemic stroke patients (mean age 67 ± 13 years, 66.3% male), hemorrhagic transformation was identified in 28 (13.7%) patients, and neurological deterioration was occurred in 24 (11.7%), and both events in 9 (4.4%). The TEG value of R (reaction time) <5 min was significantly higher in patients with hemorrhagic transformation than in patients without hemorrhagic transformation (81.1% vs. 60.5%, p = 0.027), and based on multivariable analysis, this was an independent predictor of hemorrhagic transformation (odds ratio 3.215 [95% confidence interval: 1.153–8.969]).

      Conclusions

      In patients with acute ischemic stroke, TEG value of R < 5 min can identify patients who have an increased risk of hemorrhagic transformation during hospitalization.

      Abbreviations:

      aPTT (activated partial thromboplastin time), CT (computed tomography), ED (emergency department), IAT (intra-arterial thrombolysis), K (kinetic time), MA (maximal amplitude), NIHSS (National Institutes of Health Stroke Scale), PT (prothrombin time), R (reaction time, minutes), rt-PA (recombinant tissue plasminogen activator), TEG (Thromboelastography)

      Keywords

      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • Benjamin E.J.
        • Berry J.D.
        • Blaha M.J.
        • et al.
        Heart disease and stroke statistics—2014 update: a report from the American Heart Association.
        Circulation. 2014; 129: e28-e292https://doi.org/10.1161/01.cir.0000441139.02102.80
        • Meretoja A.
        • Keshtkaran M.
        • Saver J.L.
        • Tatlisumak T.
        • Parsons M.W.
        • Kaste M.
        • et al.
        Stroke thrombolysis: save a minute, save a day.
        Stroke. 2014; 45: 1053-1058https://doi.org/10.1161/STROKEAHA.113.002910
        • Seners P.
        • Turc G.
        • Oppenheim C.
        • Baron J.C.
        Incidence, causes and predictors of neurological deterioration occurring within 24 h following acute ischaemic stroke: a systematic review with pathophysiological implications.
        J Neurol Neurosurg Psychiatry. 2015; 86: 87-94https://doi.org/10.1136/jnnp-2014-308327
        • Kim J.M.
        • Moon J.
        • Ahn S.W.
        • Shin H.W.
        • Jung K.H.
        • Park K.Y.
        The etiologies of early neurological deterioration after thrombolysis and risk factors of ischemia progression.
        J Stroke Cerebrovasc Dis. 2016; 25: 383-388https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.010
        • McDonald M.M.
        • Wetzel J.
        • Fraser S.
        • Elliott A.
        • Bowry R.
        • Kawano-Castillo J.F.
        • et al.
        Thrombelastography does not predict clinical response to rtPA for acute ischemic stroke.
        J Thromb Thrombolysis. 2016; 41: 505-510https://doi.org/10.1007/s11239-015-1280-9
        • Mohamed M.
        • Majeske K.
        • Sachwani G.R.
        • Kennedy K.
        • Salib M.
        • McCann M.
        The impact of early thromboelastography directed therapy in trauma resuscitation.
        Scand J Trauma Resusc Emerg Med. 2017; 25: 99https://doi.org/10.1186/s13049-017-0443-4
        • Wang H.
        • Robinson R.D.
        • Phillips J.L.
        • Ryon A.
        • Simpson S.
        • Ford J.R.
        • et al.
        Traumatic abdominal solid organ injury patients might benefit from thromboelastography-guided blood component therapy.
        J Clin Med Res. 2017; 9: 433-438https://doi.org/10.14740/jocmr3005w
        • Trautman C.L.
        • Palmer W.C.
        • Taner C.B.
        • Canabal J.M.
        • Getz T.
        • Goldman A.
        • et al.
        Thromboelastography as a predictor of outcomes following liver transplantation.
        Transplant Proc. 2017; 49: 2110-2116https://doi.org/10.1016/j.transproceed.2017.07.015
        • Welsby I.J.
        • Jiao K.
        • Ortel T.L.
        • Brudney C.S.
        • Roche A.M.
        • Bennett-Guerrero E.
        • et al.
        The kaolin-activated Thrombelastograph predicts bleeding after cardiac surgery.
        J Cardiothorac Vasc Anesth. 2006; 20: 531-535https://doi.org/10.1053/j.jvca.2005.04.013
        • Bolliger D.
        • Seeberger M.D.
        • Tanaka K.A.
        Principles and practice of thromboelastography in clinical coagulation management and transfusion practice.
        Transfus Med Rev. 2012; 26: 1-13https://doi.org/10.1016/j.tmrv.2011.07.005
        • Jeon S.B.
        • Ryoo S.M.
        • Lee D.H.
        • Kwon S.U.
        • Jang S.
        • Lee E.J.
        • et al.
        Multidisciplinary approach to decrease in-hospital delay for stroke thrombolysis.
        J Stroke. 2017; 19: 196-204https://doi.org/10.5853/jos.2016.01802
        • Shi Z.
        • Zheng W.C.
        • Fu X.L.
        • Fang X.W.
        • Xia P.S.
        • Yuan W.J.
        Hypercoagulation on thromboelastography predicts early neurological deterioration in patients with acute ischemic stroke.
        Cerebrovasc Dis. 2018; 46: 125-131https://doi.org/10.1159/000492729
        • Lee S.J.
        • Hong J.M.
        • Lee S.E.
        • Kang D.R.
        • Ovbiagele B.
        • Demchuk A.M.
        • et al.
        Association of fibrinogen level with early neurological deterioration among acute ischemic stroke patients with diabetes.
        BMC Neurol. 2017; 17: 101https://doi.org/10.1186/s12883-017-0865-7
        • Kanamaru T.
        • Suda S.
        • Muraga K.
        • Okubo S.
        • Watanabe Y.
        • Tsuruoka S.
        • et al.
        Albuminuria predicts early neurological deterioration in patients with acute ischemic stroke.
        J Neurol Sci. 2017; 372: 417-420https://doi.org/10.1016/j.jns.2016.11.007
        • Jeon S.B.
        • Kwon S.U.
        • Park J.C.
        • Lee D.H.
        • Yun S.C.
        • Kim Y.J.
        • et al.
        Reduction of midline shift following decompressive hemicraniectomy for malignant middle cerebral artery infarction.
        J Stroke. 2016; 18: 328-336https://doi.org/10.5853/jos.2016.00262
        • Wang S.C.
        • Shieh J.F.
        • Chang K.Y.
        • Chu Y.C.
        • Liu C.S.
        • Loong C.C.
        • et al.
        Thromboelastography-guided transfusion decreases intraoperative blood transfusion during orthotopic liver transplantation: randomized clinical trial.
        Transplant Proc. 2010; 42: 2590-2593https://doi.org/10.1016/j.transproceed.2010.05.144
        • Ak K.
        • Isbir C.S.
        • Tetik S.
        • Atalan N.
        • Tekeli A.
        • Aljodi M.
        • et al.
        Thromboelastography-based transfusion algorithm reduces blood product use after elective CABG: a prospective randomized study.
        J Card Surg. 2009; 24: 404-410https://doi.org/10.1111/j.1540-8191.2009.00840.x
        • von Kier S.
        • Royston D.
        Reduced hemostatic factor transfusion using heparinase-modified thrombelastography (Teg) during cardiopulmonary bypass (Cpb).
        Anesthesiology. 1998; 89https://doi.org/10.1097/00000542-199809160-00015
        • Kawano-Castillo J.
        • Ward E.
        • Elliott A.
        • Wetzel J.
        • Hassler A.
        • McDonald M.
        • et al.
        Thrombelastography detects possible coagulation disturbance in patients with intracerebral hemorrhage with hematoma enlargement.
        Stroke. 2014; 45: 683-688https://doi.org/10.1161/STROKEAHA.113.003826
        • Liu Z.
        • Chai E.
        • Chen H.
        • Huo H.
        • Tian F.
        Comparison of thrombelastography (TEG) in patients with acute cerebral hemorrhage and cerebral infarction.
        Med Sci Monit. 2018; 24: 6466-6471https://doi.org/10.12659/MSM.910121
        • Cotton B.A.
        • Minei K.M.
        • Radwan Z.A.
        • Matijevic N.
        • Pivalizza E.
        • Podbielski J.
        • et al.
        Admission rapid thrombelastography predicts development of pulmonary embolism in trauma patients.
        J Trauma Acute Care Surg. 2012; 72 (discussion 5-7): 1470-1475
        • Mahla E.
        • Lang T.
        • Vicenzi M.N.
        • Werkgartner G.
        • Maier R.
        • Probst C.
        • et al.
        Thromboelastography for monitoring prolonged hypercoagulability after major abdominal surgery.
        Anesth Analg. 2001; : 572-577https://doi.org/10.1097/00000539-200103000-00004
        • McCrath D.J.
        • Cerboni E.
        • Frumento R.J.
        • Hirsh A.L.
        • Bennett-Guerrero E.
        Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction.
        Anesth Analg. 2005; 100: 1576-1583https://doi.org/10.1213/01.ANE.0000155290.86795.12
        • Harr J.N.
        • Moore E.E.
        • Chin T.L.
        • Ghasabyan A.
        • Gonzalez E.
        • Wohlauer M.V.
        • et al.
        Platelets are dominant contributors to hypercoagulability after injury.
        J Trauma Acute Care Surg. 2013; 74 (discussion 62-5): 756-762
        • Windelov N.A.
        • Sorensen A.M.
        • Perner A.
        • Wanscher M.
        • Larsen C.F.
        • Ostrowski S.R.
        • et al.
        Platelet aggregation following trauma: a prospective study.
        Blood Coagul Fibrinolysis. 2014; 25: 67-73https://doi.org/10.1097/MBC.0b013e328364c2da
        • Ettinger M.G.
        Thromboelastographic studies in cerebral infarction.
        Stroke. 1974; 5: 350-354https://doi.org/10.1161/01.Str.5.3.350
        • Elliott A.
        • Wetzel J.
        • Roper T.
        • Pivalizza E.
        • McCarthy J.
        • Wallace C.
        • et al.
        Thromboelastography in patients with acute ischemic stroke.
        Int J Stroke. 2015; 10: 194-201https://doi.org/10.1111/j.1747-4949.2012.00919.x
        • Yao X.
        • Dong Q.
        • Song Y.
        • Wang Y.
        • Deng Y.
        • Li Y.
        Thrombelastography maximal clot strength could predict one-year functional outcome in patients with ischemic stroke.
        Cerebrovasc Dis. 2014; 38: 182-190https://doi.org/10.1159/000365652
        • Saqqur M.
        • Molina C.A.
        • Salam A.
        • Siddiqui M.
        • Ribo M.
        • Uchino K.
        • et al.
        Clinical deterioration after intravenous recombinant tissue plasminogen activator treatment: a multicenter transcranial Doppler study.
        Stroke. 2007; 38: 69-74https://doi.org/10.1161/01.STR.0000251800.01964.f6
        • Fiorelli M.
        • Bastianello S.
        • von Kummer R.D.
        • del Zoppo G.J.
        • Larrue V.
        • Lesaffre E.
        • et al.
        Hemorrhagic transformation within 36 hours of a cerebral infarct.
        Stroke. 1999; 30: 2280-2284https://doi.org/10.1161/01.Str.30.11.2280
        • Lindley R.I.
        • Wardlaw J.M.
        • Sandercock P.A.
        • Rimdusid P.
        • Lewis S.C.
        • Signorini D.F.
        • et al.
        Frequency and risk factors for spontaneous hemorrhagic transformation of cerebral infarction.
        J Stroke Cerebrovasc Dis. 2004; 13: 235-246https://doi.org/10.1016/j.jstrokecerebrovasdis.2004.03.003
        • Terruso V.
        • D'Amelio M.
        • Di Benedetto N.
        • Lupo I.
        • Saia V.
        • Famoso G.
        • et al.
        Frequency and determinants for hemorrhagic transformation of cerebral infarction.
        Neuroepidemiology. 2009; 33: 261-265https://doi.org/10.1159/000229781
        • Jickling G.C.
        • Liu D.
        • Stamova B.
        • Ander B.P.
        • Zhan X.
        • Lu A.
        • et al.
        Hemorrhagic transformation after ischemic stroke in animals and humans.
        J Cereb Blood Flow Metab. 2014; 34: 185-199https://doi.org/10.1038/jcbfm.2013.203
        • Yaghi S.
        • Elkind M.S.
        Cryptogenic stroke: a diagnostic challenge.
        Neurol Clin Pract. 2014; 4: 386-393https://doi.org/10.1212/CPJ.0000000000000086
        • Marsh E.B.
        • Llinas R.H.
        • Schneider A.L.
        • Hillis A.E.
        • Lawrence E.
        • Dziedzic P.
        • et al.
        Predicting hemorrhagic transformation of acute ischemic stroke: prospective validation of the HeRS score.
        Medicine (Baltimore). 2016; 95e2430https://doi.org/10.1097/MD.0000000000002430