Advertisement

Should reperfusion be revisited?

Published:February 29, 2016DOI:https://doi.org/10.1016/j.ajem.2016.02.070
      The article by Fei Han et al in this issue of the Journal may be an important bit of bench science. In a rodent model of global ischemia, they found that both the moderate-sized (cyclic non-ribosomal peptide) pharmaceutical drug cyclosporine and therapeutic hypothermia appear to blunt reperfusion related neuroinjury through similar mechanisms. Even more intriguingly, Fei Han et al provide a first indication that the pharmaceutical efficacy of cyclosporine and the physical efficacy of hypothermia may be somewhat additive.
      To read this article in full you will need to make a payment
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Negovsky V.A.
        • Gurvitch A.M.
        Post-resuscitation disease—a new nosological entity. Its reality and significance.
        Resuscitation. 1995; 30: 23-27
        • Hossmann K.A.
        Neuronal survival and revival during and after cerebral ischemia.
        Am J Emerg Med. 1983; 1: 191-197
        • Hossmann K.A.
        Post-ischemic resuscitation of the brain: selective vulnerability versus global resistance.
        Prog Brain Res. 1985; 63: 3-17
        • Nevander G.
        • Ingvar M.
        • Auer R.
        • Siesjö B.K.
        Irreversible neuronal damage after short periods of status epilepticus.
        Acta Physiol Scand. 1984; 120: 155-157
        • Kloner R.A.
        • Ganote C.E.
        • Jennings R.B.
        The “no-reflow” phenomenon after temporary coronary occlusion in the dog.
        J Clin Invest. 1974; 54: 1496-1508
        • Braunwald E.
        • Kloner R.A.
        Myocardial reperfusion: a double-edged sword?.
        J Clin Invest. 1985; 76: 1713-1719
        • Sivaraman V.
        • Mudalgiri N.R.
        • Salvo C.
        • Kolvekar S.
        • Hayward M.
        • Yap J.
        • et al.
        Postconditioning protects human atrial muscle through the activation of the RISK pathway.
        Basic Res Cardiol. 2007; 102: 453-459
        • Hausenloy D.J.
        • Yellon D.M.
        Time to take myocardial reperfusion injury seriously.
        N Engl J Med. 2008; 359: 518-520
        • Safar P.
        • Peter S.
        Cerebral resuscitation after cardiac arrest: research initiatives and future directions.
        Ann Emerg Med. 1993; 22: 324-349
        • Safar P.
        Cerebral resuscitation after cardiac arrest: a review.
        Circulation. 1986; 74: IV138-IV153
        • Brookes P.S.
        Calcium, ATP, and ROS: a mitochondrial love-hate triangle.
        AJP Cell Physiol. 2004; 287: C817-C833
        • White B.C.
        • Sullivan J.M.
        • DeGracia D.J.
        • O'Neil B.J.
        • Neumar R.W.
        • Grossman L.I.
        • et al.
        Brain ischemia and reperfusion: molecular mechanisms of neuronal injury.
        J Neurol Sci. 2000; 179: 1-33
        • Chakraborti T.
        • Das S.
        • Mondal M.
        • Roychoudhury S.
        • Chakraborti S.
        Oxidant, mitochondria and calcium: an overview.
        Cell Signal. 1999; 11: 77-85
        • Halestrap A.
        Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection.
        Cardiovasc Res. 2004; 61: 372-385
        • Halestrap A.P.
        Calcium, mitochondria and reperfusion injury: a pore way to die.
        Biochem Soc Trans. 2006; 34: 232-237
        • Hausenloy D.
        Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury.
        Cardiovasc Res. 2003; 60: 617-625
        • Xu L.
        • Yenari M.A.
        • Steinberg G.K.
        • Giffard R.G.
        Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade.
        J Cereb Blood Flow Metab. 2002; 22: 21-28
        • Wang K.
        • An T.
        • Zhou L.-Y.
        • Liu C.-Y.
        • Zhang X.-J.
        • Feng C.
        • et al.
        E2F1-regulated miR-30b suppresses cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death.
        Cell Death Differ. 2015; 22: 743-754
        • Osman M.M.
        • Lulic D.
        • Glover L.
        • Stahl C.E.
        • Lau T.
        • van Loveren H.
        • et al.
        Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application.
        Neuropeptides. 2011; 45: 359-368
        • Lim W.Y.
        • Messow C.M.
        • Berry C.
        Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis.
        Br J Pharmacol. 2012; 165: 2034-2043
        • Piot C.
        • Croisille P.
        • Staat P.
        • Thibault H.
        • Rioufol G.
        • Mewton N.
        • et al.
        Effect of cyclosporine on reperfusion injury in acute myocardial infarction.
        N Engl J Med. 2008; 359: 473-481
        • Cung T.-T.
        • Morel O.
        • Cayla G.
        • Rioufol G.
        • Garcia-Dorado D.
        • Angoulvant D.
        • et al.
        Cyclosporine before PCI in patients with acute myocardial infarction.
        N Engl J Med. 2015; 373: 1021-1031
        • Leger P.-L.
        • Pierre-Louis L.
        • De Paulis D.
        • Sonia B.
        • Philippe B.
        • Elisabeth C.-L.
        • et al.
        Evaluation of cyclosporine A in a stroke model in the immature rat brain.
        Exp Neurol. 2011; 230: 58-66
        • McConeghy K.W.
        • Jimmi H.
        • Lindsey H.
        • Cook A.M.
        A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury.
        CNS Drugs. 2012; 26: 613-636
        • Nighoghossian N.
        • Berthezène Y.
        • Mechtouff L.
        • Derex L.
        • Cho T.H.
        • Ritzenthaler T.
        • et al.
        Cyclosporine in acute ischemic stroke.
        Neurology. 2015; 84: 2216-2223
        • Song K.
        • Wang S.
        • Qi D.
        Effects of cyclosporine on reperfusion injury in patients: a meta-analysis of randomized controlled trials.
        Oxid Med Cell Longev. 2015; 2015: 1-6
      1. N Engl J Med. 2002; 346: 549-556
        • Nielsen N.
        • Niklas N.
        • Jørn W.
        • Tobias C.
        • David E.
        • Yvan G.
        • et al.
        Targeted temperature management at 33 °C versus 36 °C after cardiac arrest.
        N Engl J Med. 2013; 369: 2197-2206